SimulTrough Library User’s Guide

December 2007

Contents
INEFOAUCTION ...ttt e e e e e e e e e e e e e e e s 1
I 1=t =T = o =TT od o o] (o] o I PSP 2
2. FHlBS et ——————— et e e e e e e e e e e e e e 3
3. AFirst SIMPIE eXaMPIE......iee e 3
v/ @ o] i or= I 11 o 1o 1 P 6
5. Initialization of the simulation parameters.........ccccooevvviieieiiiieieeee e 16
6. Performing the SIMUIAtioNuuuiiiiie e eeeee e 18
T RESUILS ...ttt e rea—— e et it b r it 22
8. A SECONA EXAMPIE ooiiiiiiiiie e e e e e e e e e e e e e e et 23
9. Changing geometrical and optical parameters...........coovvveviiiiiiiiiiiiinnee e 26
10. Technical parameters of the simulationcc....oeeveviiiiiiiii e 29
11. Simulation of defects of the SYSteM ... eeeiiiiiiiii e 31
D2 1 = 1o [0 1.1/ T Vo O 34
13, FINAl EXAMPIE ... erem e 35
Appendix: GNU General PUbIIC LICENSE..........coeeeuiiiiieiieee e 44
Introduction

SimulTrough is a C++ library that performs optical simulatiasfssolar parabolic
trough collectors, with a receiver pipe in the ido®e. This technology is seen as one of
the most promising in the field of renewable ener@izie SimulTrough library is
specialized in the simulation of parabolic troughdth the possibility of setting the
optical properties of the mirror and of the receiwoosing the direction of incidence
of the sun (simulating non-orthogonal incidencetmacking errors) and simulating
defects of the system such as an out-of-focus veceir deformations of the mirror.
This can be a useful instrument to predict the ogdical efficiency of a system in
working conditions and to study the tolerance téecks and the importance of optical
quality.

The library is distributed under the GNU GenerablRuLicense (see Appendix A).
It can be freely distributed and modified, but matluded in proprietary programs. Of
course, the library is distributed without any veatty, without even the implied
warranty of merchantability or fitness for a pautar purpose.

1. General description

The library uses a recursive ray-tracing techniguaerform optical simulations of a
system composed of parabolic trough collectorsh vtfite receiver pipe of circular
section in the focus. The receiver pipe can hafferdnt protective layers, such as the
glass covering in the classical receiver; the aplyuest is that the layers are circular
and concentrical around the focus. The number ofeptive layers is arbitrary, even
though the cases of practical interest are usliatiged to the evacuated tube with a
glass covering, and a tube without any covering.

All the geometrical and optical properties of theugh can be set by the user. Each
surface of the system must be endowed with a tefeetaw, depending on the angle of
incidence and on the wavelength. For each mediumeah index of refraction,
depending on the wavelength, and an absorption d@pending on the length of the
path through the medium and on the wavelength, rbastefined. Even if, for an
homogeneous medium, these functions are relatedrétfhectivity and the absorption
can be obtained from the indices of refraction)thia library the three properties are
kept independent, in order to simulate more gerstadtions, such as the presence of
thin films: e. g., an anti-reflex layer on the gldsas a reflection law that cannot be
obtained from the index of refraction of the glasgoreover, if the wavelength
dependence is ignored — as it often happens —ieablaws can be defined calculating
an average law on the solar spectrum, and thicéawot be derived from the index of
refraction of the medium. The independence of theogption law from the index of
refraction make the complex refractive index uselss, the given index must be real,
ignoring the imaginary part. It must be stressed thnon-negligible imaginary part of
the refraction index completely invalidates the-tia@acing analysis, so, in the tractable
cases, the choice of a real index is not a resinict

The simulation is performed by shooting a certaumhber of solar beams on the
collector, at regular intervals on the collectodth; the number of solar beams can be
set by the user. A solar beam is a group of rayis thie angular distribution of the sun
rays, with the energy modulated in a limb-darkeneztel; 90% of rays are used to
simulate the solar disk, and 10% are used for #le. The solar wavelength spectrum
can also be considered, if the optical propertegsedd significantly on the wavelength;
in this case, for each “ray” of the solar beam date number of rays of different
wavelength are shot, with the energy distributibthe solar spectrum.

The beams can be shot from arbitrary directions waspect to the collector, so as
to simulate the inclination of the rays incidenttba collectoyor the tracking error.

Several kinds of defects of the system can be sitedi

- Defocalisation: the receiver centre is not exadatlthe focus, e. g. because of

thermal or gravitational deformations.

- Longitudinal random error on the inclination of timéror: Gaussian errors on the

inclination of the mirror, in the direction pardlte the receiver.
- Transverse random error on the inclination of thean Gaussian errors on the
inclination of the mirror, in the transversal seat{errors on the parabolic profile).
This can be different from the longitudinal error.

- Large-scale transverse errors: large-scale defaynsabf the parabolic profile,
because of thermal stress, or the effect of supporterrors in the constructions.
The profile error must be given as a Fourier series

The simulation gives the distribution of the saladiation on the receiver surface,
for a unitary incident direct radiation, and théatacollection efficiency. The radiation
absorbed in the glass layer, if such a layer isgnk can also be obtained.

2. Files

Four files are givensSimulTrough.h (header file), SimulTrough.cop (library
source file),opt_fun_definition.h (auxiliary file where the optical parameters are
already defined, for simplicity of use), angimulTrough_UserGuide.pdf (this
document).

In all the programs where the library is used, lteadersimulTrough.n must be
included by adding the following command at theibeimg of the program

#include” (path)SimulTrough.h”

or, if the file is copied in the standard headeectory,

#include<SimulTrough>

If one chooses to use the optical function defimecbpt fun_definition.h ,
possibly modified by the user, this file must absoincluded with the command

#include” (path)opt_fun_definition.h”

or

#include<opt_fun_definition>

Moreover, the fileSimulTrough.cop must be included in the project.
The file SimulTrough.cpp requires to include the filsimulTrough.n ; the first
code line of the file is

#include"SimulTrough.h”

which of course works only if the header file ahd tibrary source file are placed in the
same directory. Otherwise, this line must be chdngédding the path of the header file.

The file SimulTrough.cpp ~ can be compiled once to create a library and linéed
after the compilation when needed, without inclgdihe source file in the project and
without re-compiling it every time. The choice afpplying the source code is due to
compatibility reasons (the source file should waiikh all compilers and all operative
systems), and it is meant to give the user theilpitigsof modifying the file.

3. A first simple example

This program is a first example of a simulationaldey with the most simple case.
More accurate and systematic explanation will bewgiater.

#include<iostream>
#include<cmath>

#include"SimulTrough.h"
#include"opt_fun_definition.h"

using namespace std;

int main() {

}

OPT_FUN_INIT;
int NumSurface = 3;
double RadiiReceiver[] = {0.065, 0.062, 0.035};
double Focus = 1.8,
MirrorWidth = 3.0,
FreeSpace = 0.05;
opt_simulation simul(Focus, MirrorWidth, FreeSpace, NumSurface,
RadiiReceiver, ReflectMir, ReflectSurfaces, Refind,

Absorption);

simul.simulate(0, 1, 0);
cout<<endl<<endl;

for (int i=0; i<72; i++) cout<<"Energy collected be tween "<<
5*i<<" and "<<5*(i+1)<<" = "<<
simul.get_absorber(i)<<endl;

cout<<endI<<"Efficiency = "<<simul.get_efficiency() <<endl;

In the first lines, the library headesirfquiTrough.n) and the file with the
definitions of the optical functionsgt_fun_definition.h) are included.

The commandPT_FUN_INIT, at the beginning of the program, calls a macsad th
initializes the optical properties; the macro igirksd in opt_fun_definition.h . This
macro defines the variablegflectMir, ReflectSurfaces, Reflnd, Absorption,
that will be used later; they are pointers to tp&oal functions. More details about the
optical functions will be given in the next section

The following command lines (the three variable laetions) defines the
geometrical properties of the system:

The numbeNumSurface of concentric surfaces around the receiver, inolyidthe
absorbing surface. A surface is a separation betwee media: for example, the
classical receiver with a glass covering has 3ased (receiving surface, internal
face of the glass, external face of the glassy thithe case considered in the
example. A naked receiver would have 1 surface.

The radii of the concentric surfaces, given as GorecalledRadiiReceiver, in
order from the most external to the most intertlaé (@bsorbing surface). This
vector (or pointer) must of course have a numberel@ments equal to
NumSurface . In this example, the diameter of the absorbét csn (radius 0.035

m), and the glass covering has an external dianoéte8 cm and a thickness of 3
mm (the two radii are 0.065 m and 0.062 m).

- The focal distancer6cus) of the system (in this case, 1.8 m);

- The semi-width of the parabolic collectokiforwidth) (in this case, the
collector has a total width of 6 m);

- The semi-width of the possible free space at theexeof the parabola
(FreeSpace), between the two semi-parabolas, often presembugh systems (in
this case, the two halves of the mirror are sepdrhy a distance of 10 cm, so the
variableFreeSpace has the value 0.05).

All these geometrical measures must of course \mngh the same unity (meters in

this case).

In the next line dpt_simulation ...) an object of the classt_simulation is
built, calledsimul . This object is a complete description of the eyystand it must be
built with the constructor passing the parameterghe order shown: first the five
geometrical data Ffcus, Mirrorwidth, FreeSpace, = NumSurface,

RadiiReceiver) and then the optical functionReflectMir, ReflectSurfaces,

Refind, Absorption), in this case defined by the maaeT_FUN_INIT. These nine
parameters are always required in all cases. Tdrerether optional parameters that can
be given, to introduce defects or to set numenaabmeters: they will be described
later.

The following line (simul.simulate(...)) performs the simulation, for the system
defined in the objectimul . The position of the sun must be passed to thetifum it is
identified by a vectorx y, z) that points towards the centre of the sun witlpeet to
the collector. The axis is on the vertex line, theaxis is orthogonal to the collecting
plane of the collector, and tixeaxis is orthogonal to both. The parabolic sectays in
thexy plane, and the receiver is parallel to #exis. In the example shown above, the
sun is exactly orthogonal above the collector: athlyy component of the vector is
different from 0. The vector is passed to the fiomctsimulate as threedouble
parameters, in the ordeyry, z (in this case 0, 1, 0).

During the simulation, the distribution of the rafbn absorbed by the receiver is
computed. The receiver circumference is dividea iahgular sectors (their default
number is 72, and each sector has a width of 3f)tla@ energy absorbed in each sector
is saved. The sectors are enumerated from O ton7&ounterclockwise direction,
starting from the point opposite to the collectum,the dark side of the receiver. At the
end of the simulation, the functiosimul.get_absorber(i) returns the energy
absorbed in the sector numbered within thefor cyclei goes from 0 to 71, so the
distribution of the absorbed energy is printed fwa gcreen. At the end, the total optical
efficiency is printed; it is read with the functieimul.get_efficiency()

Launching the program, the output window will show

Setting solar position OK
x0=-3 OK

x0 =-2.97 OK
x0=-2.94 OK

(..)

x0=3 OK

Energy collected between 0° and 5° = 0.000559756
Energy collected between 5° and 10° = 0.000537184
Energy collected between 10° and 15° = 0.000445569

(..)

Energy collected between 355° and 360° = 0.00054779 8

Efficiency = 0.774441

The linesxo = ... are printed during the simulation to show itsgress (this feature
can be disabledko varies from-Mirrorwidth ~ to Mirrorwidth . The following lines
(Energy collected between ...) are printed in thér cycle, and show the energy
absorbed in each sector; the sum of these valube istal optical efficiency.

4. Optical functions

As shown in the preceding section, the main strectf the library is the class
opt_simulation . This class is created before performing any sanwh, and it
contains all the data on the collector. When cngathe class, all the geometric data
must be given, and also a list of pointers to tpical functions of the various surfaces
and media. So, before the simulation one has tmeléhe optical functions. This
section shows how to perform this task. It can sgaite laborious, but probably it will
almost never be done in the actual work; this eads aimed to show the way in which
the library deals with optical parameters, and hovws how to use properly the
opt_fun_definition.h file or a similar created by the user. The readleo wants to
see more examples and practice before changingpties may skip this section and go
to the following, initializing the optical functienas shown in the example of Section 3
(the headeopt_fun_definition.h must be included), and returning here later.

The procedure to inizialize the optical propertieguires three steps:

a) Writing the optical functions;

b) Associating the optical functions with function ptars;

c) Passing the pointers to thgt_simulation constructor.

a) There are three kind of optical functions: retflaty functions, associated with
each surface, refractive indices and absorptiontions, associated with each medium.

A function of reflectivity must have twdouble parameters: the cosine of the angle
of incidence and the wavelength of the light. Alétwavelength dependences must be
expressed with the wavelength measured in Angsg@mAngstrom is 18" m; the
wavelength value in the solar spectrum goes fro036 25000 A). The function must
return adouble , the fraction of energy of the ray reflected. ttat 2* NumSurface
reflectivity functions must be definediymsSurface , as in the example of the previous
section, is the number of concentric surfaces afdhe focus): one function for the
mirror and the others for the concentric surfa@emeflectivity functions are associated
with each concentric surface (except the absorbesg for each side. As an example, in
the classical case of a glass covered receivefutitions are 6: one for the mirror, one

for the receiver surface, two for the external fatéhe glass (one for rays coming from
the gir, and one for rays coming from the glassy)l &avo for the internal face of the
glass.

When a ray hits the mirror, the fraction which st meflected is considered lost.
When the ray hits the absorber, the fraction whighot reflected is considered
absorbed and converted to heat. When the ray hésbthe concentric surfaces around
the absorber (e. g. a face of the glass) the fnactot reflected is considered refracted.

A function of refractive index has onguble parameter, the wavelength (in
Angstrom), and it returns @uble , the refractive index. The media in which the tigh
can travel aresumsSurface : the air, plus thelumSurface-1 media contained between
the concentric surfaces. In the case of the clalssceiver, the media are air, glass, and
the vacuum. So, a numbromSurface of refractive index functions must be defined.
The refraction index must be real, since the racitg method fails for a high
imaginary part of the refraction index; the absionptis considered in other optical
functions.

A function of absorption receives twiouble parameters, the length of the travel of
the ray in the medium and the wavelength (in Amgs); and it returns aouble , the
fraction of energy of the emerging rago{ the absorbed fraction). The number of
absorption functions is the same as the numberealian\umSurface , as in the case of
refraction indices).

b) Once all the functions have been defined, thestnioe assigned to function
pointers, in order to be passed to the simulatidnpointer to double(double,
double) will contain the mirror reflectivity; an array @ointers of the same type with
2*NumsSurface-1 elements will contain the functions of reflectwiof the concentric
surfaces, in order from the outermost to the inmegh the reflectivity for rays from
the outside coming before the reflectivity for rdysm the inside. For example, for a
classical evacuated receiver the order is:

Element O: external face of the glass, ray fromaiine

Element 1: external face of the glass, ray fromgilass;

Element 2: internal face of the glass, ray fromglaess;

Element 3: internal face of the glass, ray fromeuum;

Element 4: absorbing surface.

Another array of pointers t@ouble(double) of NumSurface elements will contain
the refractive indices, from the outermost to ti@ast (in the classical case: air, glass,
vacuum), and a third array of pointersdiuble(double, double) will contain the
absorption functions, in the same order.

c) These pointers are then passed to the constrdotdhe ray-tracing process,
during the simulation, these optical functions via# used each time a ray crosses a
medium or hits a surface.

In the example of Section 3, the definition of thical functions was in the file
opt_fun_definition.h , while the definition of the pointers was hiddem the
OPT_FUN_INIT macro. So, once the definition has been doneshtiine, the process of
initialization can be done in a single line.

! Of course the two functions associated with theesaurface are not independent, but the
implementation of the program requires that theygiven separately.

Now we will show step by step the definition of iaical functions in the case of a
classical receiver; at the same time, we will bthielopt_fun_definition.h file.

In this case, we haweumSurface=3 : the absorbing surface, the internal face of the
glass, and the external face of the glass. So arst define 6 functions of reflectivity:

1) a function for the mirror: as an example, westder a simple (and unrealistic)
model of mirror, with reflectivity 1-0.1co8), where®b is the incidence angle;
the normal reflectivity is 0.9. We can define tlmge function (independent of
the wavelengtihambda)

double MirrorReflectivity (double cosinc, double la mbda) {

return 1-0.1*cosinc;

2) a function for the reflectivity of the external &aof the glass, when the ray
comes from outer space (the air). As an exampleconsider a glass without
thin layer coverings, and with a law of reflectidatermined by classical wave
optics, assuming an index of refraction 1.5, and neglect the wavelength

dependence:
double ReflectGlassExternOut (double cosinc, double lambda) {
double R_perp = (cosinc-sqrt(1.25+cosinc*cosinc))/(cosinc+

sqrt(1.25+cosinc*cosinc));

double R_par = (2.25*cosinc-
sqgrt(1.25+cosinc*cosinc))/(2.25*cosinc+
sqrt(1.25+cosinc*cosinc));

return 0.5*(R_perp*R_perp+R_par*R_par);

R_par squared is the reflectivity for polarization p&shlto the surface, while
R_perp squared is for polarization in the orthogonal clien; the reflectivity for
unpolarized light is the mean of the two.

3) a function for the reflectivity of the external &aof the glass, when the ray
comes from inner space (the glass). This functeothe inverse of the above
one, but it must also consider the possible tetéé¢ction:

double ReflectGlassExternin (double cosinc, double lambda) {
if (cosinc*cosinc <= 0.5556) return 1; // total reflection
double R_perp = (cosinc-sqrt(-0.5556+cosinc*cosinc))/(cosinc

+sqrt(-0.5556+cosinc*cosinc));

double R_par = (cosinc-1.5*sqrt(-

1.25+2.25*cosinc*cosinc))/(cosinc+
1.5*sqrt(-1.25+2.25*cosinc*cosinc));

return 0.5*(R_perp*R_perp + R_par*R_par);

Note that it would be possible to calculate onecfiam from the other, but the
implementation requires that the functions are kiegtinct.

4) a function for the reflectivity of the internal of the glass, for rays that come
from outer space (the glass). Supposing that tegtass faces are identical, we
can use the function defined at point 3; we singiignge the name, calling it
ReflectGlassInternOut . Here we are neglecting the little difference hesw
the refraction index of air and of vacuum.

5) A function for the reflectivity of the internal fa®f the glass, for rays that come
from inner space (the vacuum between the glassten@dbsorber). As before,

we copy the function already defined at point 2arging its name to
ReflectGlassinternin.

6) Reflectivity function of the absorber: we can udectitious model similar to the
one used for the mirror, with a normal reflectivatfy0.05:

double ReflectAbsorber (double cosinc, double lambd a) {

return 1-0.95*cosinc;

}

So, the 6 reflectivity functions are defined.

One must also define the 3 refractive indices,tli@r 3 media that the ray of light
can travel through: air, glass, and vacuum. FopBaity, we use here a constant index
of refraction for all the media:

1) air:

double Reflndex_air (double lambda) {
return 1.0003;
}

2) glass:

double Reflndex_glass (double lambda) {
return 1.5;
}

3) vacuum:

double Reflndex_vacuum (double lambda) {
return 1;
}

The three media also require a function of absonpdif light. In this simple model, we
consider null absorption by air and vacuum, anéx@onential decay law for the glass,
with an absorption of 0.3% of the incident light éoglass thickness of one millimeter.

1) Air:

double Absorption_air(double length, double lambda) {
return 1;

}

2) Glass:

double Absorption_glass(double length, double lambd a) {

return exp(-3*length);

3) Vacuum:

double Absorption_vacuum(double length, double lamb da) {
return 1;
}

So for the system considered here one must defirmptical functions.

All the functions are independent: the refractiollex has nothing to do with
reflectivity, nor with the absorption. This featusfows to simulate thin films, and to
use wavelength-mean properties. As an examplejnaatftireflex layer on the glass
changes the properties of reflection of the glaélsat cannot be calculated from the
simple index of refraction; and it is not possibdesimulate the anti-reflex as another
concentric layer, because it is too thin and wawis would be needed. So, in the case
of an anti-reflex layer the glass must be describgd glass with the usual index of
reflection, but with a law of reflectivity on theigace not calculable from the index of
refraction, and defined otherwise.

Of course, the definition of the function is quidorious, and it is better to do it
once and for all and save the functions in a hediier A file of this kind is
opt_fun_definition.h , iIn which the optical functions are already definene can
directly change the functions in this file to sawverk.

Once the functions have been defined, pointersutetions must be assigned to
them, to pass them to the constructor of dhesimulation class. Suitable pointer
types are defined in the library. The typ#ect s points to a function of reflectivity,

the typerefrac_index_function points to a refractive index function, and theetyp
absorption_function points to an absorption function. The assignmeugtrbe made
in this way:

- apointer of the typeeflect_ s must be associated to the fucntion of reflectivity
of the mirror:

reflect_s ReflectMir = &MirrorReflectivity;

10

- an array ob*NumsSurface-1 pointers of the typeeflect s must be declared
and associated with the reflective functions of ¢bacentric surfaces, in order
from the outside to the inside: in this case, tingt function (index 0) is the
reflectivity of the external face of the glass éuter rays, the second (index 1) is
the reflectivity of the external face for inner sayollowed by the functions for
the internal face in the same order; the last foncis the reflectivity of the
absorber:

reflect_s ReflectSurfaces[5];

ReflectSurfaces[0] = &ReflectGlassExternOut;
ReflectSurfaces[1] = &ReflectGlassExternin;
ReflectSurfaces[2] = &ReflectGlassInternOut;
ReflectSurfaces[3] = &ReflectGlassInternin;
ReflectSurfaces[4] = &ReflectAbsorber;

- an array ofNumsSurface pointers of the typesfrac_index_function must be
assigned to the refraction index functions, in orilem the outermost to the
inmost medium (in this case: air, glass, vacuum):

refrac_index_function Reflnd[3];

Reflnd[0]=&RefIndex_air;
Reflnd[1]=&Reflndex_glass;
Reflnd[2]=&Reflndex_vacuum;

- an array ofNumSurface pointers of the typebsorption_function must be
assigned to the function of absorption, in the sarder as above:

absorption_function Absorption[3];

Absorption[0]=&Absorption_air;
Absorption[1]=&Absorption_glass;
Absorption[2]=&Absorption_vacuum;

The definition and assignment of the optical fumas is concluded. When
constructing the objecbt_simulation , the pointers must be passed to the constructor,
after the geometrical parameters, in the followamder: reflectivity of mirror, array of
the reflectivity of the surfaces, array of the aefion indices, array of the absorption
functions. This is the meaning of the command

opt_simulation simul(Focus, MirrorWidth, FreeSpace, NumSurface,
RadiiReceiver, ReflectMir, ReflectSurfaces, Reflnd,
Absorption);

in the example of Section 3.

In that example, all the work shown here was awhidie definition of the
functions was in thept_fun_definition.h file, and the assignation was hidden in the
OPT_FUN_INIT macro, also defined inpt_fun_definition.h . This header file can
always be used to save work, even forgetting allntfachinery of the function pointers,

11

since it is plausible that the optical propertiagi not be changed too often. One can
proceed in this way:

- modify the optical function directly impt_fun_definition.h , to reproduce
the system; the comments in the file indicate ¢jetlre role of each function,
for the classical configuration of a glass-covemedeiver. If the desired
configuration is different, functions can be addedleleted; in this case, the size
of the arrays of pointers and the assignment t@dtieters must also be changed
consistently.

- include the header file in the prograafter the SimulTrough.h ~ file (since some
of the definitions and functions of the library araised in
opt_fun_definition.h);

- before creating thept_simulation object that will perform the simulation, call
the OPT_FUN_INIT macro;

- create theopt_simulation object passing to the constructor the variables
ReflectMir, ReflectSurfaces, Refind, Absorption (respectively at the
position 4, 5, 6 and 7 of the argument list) asoaptfunction pointers, since
these are the names used by the macro.

This procedure has already been shown in the exammplSection 3; now the
meaning of the few lines used to initialize theicgdtproperties should be clear.

Now the complete header file, as it is given ifigiavith the library, is shown. We
already built all its parts in the previous exarspdé optical functions, in this section.
The definition and the assignment of the pointeesirathe macro definition.

/I header file opt_fun_definition.h

#ifndef OPT_FUN_DEFINITION
#define OPT_FUN_DEFINITION

// DEFINITIONS OF THE REFLECTIVITY FUNCTIONS //

/I the reflectivity can depend on the angle of inci dence and
/I on the wavelength of the light. In the following functions,
/I the variable cosinc is the cosine of the inciden ce angle
// on the surface, and lambda is the wavelength of the

/l incident light, in Angstrom

/I MirrorReflectivity: reflectivity function of the mirror

double MirrorReflectivity (double cosinc, double la mbda) {
return 1-0.1*cosinc;

}

/I ReflectGlassExternOut: reflectivity of the exter nal face of

/I the glass, when the light comes from the outside (from the air)

double ReflectGlassExternOut (double cosinc, double lambda) {

double R_perp = (cosinc-sqrt(1.25+cosinc*cosinc))/(cosinc+

12

sqrt(1.25+cosinc*cosinc));

double R_par = (2.25*cosinc-
sqrt(1.25+cosinc*cosinc))/(2.25*cosinc+
sqrt(1.25+cosinc*cosinc));

return 0.5*(R_perp*R_perp+R_par*R_par);

/I ReflectGlassExternin: reflectivity of the extern
I the glass, when the light comes from the inside

double ReflectGlassExternin (double cosinc, double
if (cosinc*cosinc <= 0.5556) return 1; // total

double R_perp = (cosinc-sqrt(-0.5556+cosinc*cosinc)
+sqrt(-0.5556+cosinc*cosinc));

double R_par = (cosinc-1.5*sqrt(-1.25
+2.25*cosinc*cosinc))/(cosinc+
1.5*sqrt(-1.25+2.25*cosinc*cosinc));

return 0.5*(R_perp*R_perp + R_par*R_par);
}

/I ReflectGlassInternOut: reflectivity of the inter
I the glass, when the light comes from the “outsid
/I (from the glass)

double ReflectGlassInternOut (double cosinc, double
if (cosinc*cosinc <= 0.5556) return 1; // total

double R_perp = (cosinc-sqrt(-0.5556+cosinc*cosinc)
+sqrt(-0.5556+cosinc*cosinc));

double R_par = (cosinc-1.5*sqrt(-1.25
+2.25*cosinc*cosinc))/(cosinc+
1.5*sqrt(-1.25+2.25*cosinc*cosinc));

return 0.5*(R_perp*R_perp + R_par*R_par);
}

I/l ReflectGlassInternin: reflectivity of the intern
Il the glass, when the light comes from the “inside
Il (from the vacuum)

double ReflectGlassInternin (double cosinc, double

double R_perp = (cosinc-sqrt(1.25+cosinc*cosinc))/(
sqrt(1.25+cosinc*cosinc));

double R_par = (2.25*cosinc-sqrt(1.25

+cosinc*cosinc))/(2.25*cosinc+
sqrt(1.25+cosinc*cosinc));

13

al face of

(from the glass)

lambda) {
reflection

)/(cosinc

nal face of
e

lambda) {
reflection

)/(cosinc

al face of

lambda) {

cosinc+

return 0.5*(R_perp*R_perp+R_par*R_par);

/I ReflectAbsorber: reflectivity of the absorbing s

double ReflectAbsorber (double cosinc, double lambd
return 1-0.95*cosinc;
}

// DEFINITIONS OF REFRACTIVE INDEX FUNCTIONS //

/l'in the refractive index functions, the only depe
/l from the wavelength of the light. The parameter
I is the wavelength in Angstrom

/I Reflndex_air: refractive index of the outer spac
double Reflndex_air (double lambda) { return 1.0003

/I Reflndex_glass: refractive index of the glass
double Refindex_glass (double lambda) { return 1.5;

/I Reflndex_vacuum: refractive index of the vacuum
double Reflndex_vacuum(double lambda) { return 1; }

/| DEFINITIONS OF THE ABSORPTION FUNCTIONS //

/l the absorption can depend on the distance travel
// in the medium and on the wavelength of the light
I (respectively called length and lambda in the

// following functions).

/I The function must return the ratio between the f
/I of the ray after passing in the medium and the i
/l the ray (and _not_ the fraction of energy absor

/I Absorption_air: absorption function of the air
double Absorption_air(double length, double lambda)

/I Absorption_glass: absorption function of the gla
double Absorption_glass(double length, double lambd
{ return exp(-3*length); }

/I Absorption_vacuum: absorption function of the va

double Absorption_vacuum(double length, double lamb
{return 1;}

/I definition of OPT_FUN_INIT, the macro that assig
/I optical functions to the pointers

I the types reflect_s and absorption_function are
/I to function double(double,double)

14

urface

a) {

ndence is
lambda

e (the air)

'}

led by the light

inal energy
nitial energy of
bed).

{return 1;}
ss

a)

cuum
da)

ns the

pointers

/I the type refrac_index_function is a pointer to
/l a function double(double)
Il they are defined in SimulTrough.h

/I the following macro (OPT_FUN_INIT) defines:
/I reflectivity of mirror pointer (ReflectMir)
/I reflectivity of concentric surfaces (absorber in cluded)

/I pointers: array of 2*NumSurface-1 pointers
/I (ReflectSurfaces)

/I refractive indices pointers: array of NumSurface pointers
Il (RefInd)
/[absorption functions pointers: array of NumSurfa ce

/I pointers (Absorption)

#define OPT_FUN_INIT\
\
reflect_s ReflectMir = &MirrorReflectivity; \
\
\
reflect_s ReflectSurfaces[5]; \
ReflectSurfaces[0] = &ReflectGlassExternOut;\
ReflectSurfaces[1] = &ReflectGlassExternin;\
ReflectSurfaces[2] = &ReflectGlassInternOut;\
ReflectSurfaces[3] = &ReflectGlassInternin;\
ReflectSurfaces[4] = &ReflectAbsorber;\
\
\
refrac_index_function Reflnd[3];\
Reflnd[0]=&Reflndex_air;\
Reflnd[1]=&Reflndex_glass;\
Reflnd[2]=&Reflndex_vacuum;\
\
\
absorption_function Absorption[3];\
Absorption[0]=&Absorption_air;\
Absorption[1]=&Absorption_glass;\
Absorption[2]=&Absorption_vacuum

#endif

/I end of file

Theopt_fun_definition.h file can be used in many applications, except wthen
optical properties must be changed while the praggarunning: in this case, one must
define all the optical functions involved in thensilation and then work directly with
the pointers, passing them to the class when ne&u&action 9, the way to do this will
be shown.

15

5. Initialization of the simulation parameters

The first thing to do to perform a simulation i®ating the system to simulate. In
the program, the system is represented by an obfebe classpt_simulation ;in the
example of Section 3, this object was calliedil . The class contains the parameters of
the collectors, and all the functions that perfdhm simulation and read the results, and
also functions to change the configuration. Herestw@w in detail the constructor of the
class, and the meaning of the various parametdrs.constructor is declared in this
way:

opt_simulation::opt_simulation(

/I geometric parameters
double Focus,
double MirrorWidth,
double FreeSpace,
int NumSurface,
double* RadiiReceiver,

/Il optical functions

reflect_s ReflectMirror,

reflect_s* ReflectSurf,
refrac_index_function* Refracindex,
absorption_function* AbsorptionFunctions,

/I simulation technical parameters
int nAnnuli = 10,

int nSector = 72,

int nStep = 200,

int nLambda =1,

double LimitEnergy = 1e-5,

int NRicLim = 30,

double Offset = 1e-5,

/I errori

double Defocalisation_x = 0,
double Defocalisation_y = 0,
double GaussTrasv = 0,
double GaussLong =0,

int NumberHarm = 0,
double* CoeffHarm =0)

It is possibile to define more than apt_simulation object, and the different
objects will be completely independent; but thisd$ very useful, since the parameters
of a system can be modified instead of creatingva object.

The constructor has 9 parameters that must be givafi cases, and 13 optional
parameters. The meaning of the first 9 parametieas we already used in Section 3, is
the following:

Geometric parameters of the system:

double Focus : focal length of the mirror;
double MirrorWidth . half-width of the collector;

16

double FreeSpace : half-width of the possible free space at theesedf the mirror;

int NumSurface : hnumber of concentric cylindrical surfaces arotimelfocal line, at
which the light can be reflected, refracted, oroabed; i. e., 3 for the classical glass-
covered receiver (absorber, internal face of theglexternal face of the glass);

double* RadiiReceiver . array that contains the radii of the concentudaces,
from theoutermost to the inmost (the absorber is the lasj}.o

Optical functions (discussed in the previous s@gtio

reflect_s ReflectMirror . pointer to the reflectivity function of the mimo

reflect_s* ReflectSurf . array of pointers to the reflectivity function$ the
concentrical surfaces, from the outermost to timeost, and with 2 elements (ray from
outside / ray from inside) for each surface exéepthe absorber, that requires only one
function (ray from outside);

refrac_index_function* Refracindex . array of pointers to the index refraction
functions of the various media, from the outern{as) to the inmost (vacuum);
absorption_function* AbsorptionFunctions . array of pointers to the absoption

functions, from the outermost (air) to the inmastquum).

Following the method explained at the end of Sectdoto initialize the optical
functions, with the macroPT_FUN_INIT, these four variables will always be called,
respectivelyReflectMir , ReflectSurfaces , Refind , Absorption

The initialization procedure is shown in the begngnof the previous example:

#include” (path)SimulTrough.h”
#include” (path)opt_fun_definition.h”

int main() {

OPT_FUN_INIT;

int NumSurface = 3;

double Focus = 1.8,
MirrorWidth = 3.0,
FreeSpace = 0.05;

double RadiiReceiver[] = {0.065, 0.062, 0.035};

opt_simulation simul(Focus, MirrorWidth, FreeSpace, NumSurface,
RadiiReceiver, ReflectMir, ReflectSurfaces, Refln d, Absorption);
(...)

where the geometrical parameters are first assignedriables (only for clearness), and
then the variables are passed to the construcfter fhese program lines, one has an
object that represents the system, on which itossiple to work using the member

17

functions of the class; among them, there is thetfan simulate that performs the
optical simulation.

The meaning of the parameters, in the case ofssicll glass-covered receiver, is
shown in Figure 1.

RadiiReceiver[Z]

Gfa.ssi
Vacuum:

Absorber suface

--~ RadiiReceiver [0]

MirrorWidth

Focu=s

Mirrar

——Fresipace
|

|
Figure 1. Geometric parameters of the system, in thcase of a glass-covered evacuated tube as a
receiver.

The 13 optional parameters are set to default gaklgown in the declaration of the
constructor. They are divided in two groups: thetfi are technical parameters of the
simulation, that set the number of rays shot, tm@lver of angular sectors in which the
circumference of the receiver is divided, the aacyrof the wavelength analysis, and
numerical limits on the recursions and on the enafgrays. The last 6 parameters
define the defects of the collector: the default {gerfect collector. All these parameters
can be changed later. They will be discussed iti&Gec10 and 11.

6. Performing the simulation

Once an object of the classpt simulation has been created, the optical
simulation is performed with the functiemulate of the class, declared in this way:

void opt_simulation::simulate(double x, double y, d ouble z,
double shadow_sx = 0, double shadow_dx = 0);

The last two optional parameters are for the shatpand will be explained later;

for now, they will be omitted, which correspondsctomplete exposition to the sun. The
first three parameters of the function are theghvemponents, y andz of the vector

18

that points towards the centre of the sun. Its n@rarbitrary, but in order to avoid
numerical difficulties it is preferable not to ctseovery long or very short vectors; a
norm of the order of unity is recommended. In thiemrence system used heifee plane
Xy contains the parabolic section, with the focus dredvertex at=0 (the parabolic
profile equation isy=x%/4f, wheref is the focal distance), and tlzeaxis lies on the
vertex line of the parabolic mirror. The coordinaystem is shown in Figure 2.

As an example, if the collimation is perfect (nacking error), and the sun is
perfectly orthogonal to the collection plane, tleetor is &y,2) = (0,1,0). The tracking
error can be introduced by rotating the vectorhexy plane: a tracking error of an
anglea is represented by the vectotyz) = (-sina, cosa, 0). But of course, even
without tracking errors, the sun is usually nothogonal to the collector (orthogonality
happens at most twice a day); the inclinatyof the sun with respect to the collector
plane, with no tracking error, is represented mogathe vector in the plang. The
vector is ky,2 = (0, cosy, -siny). A generic vector g,b,c) without null elements
represents a situation in which the sun is notagoinal and a tracking error is present.
The situation withy=0 has no practical utility (the rays cannot hé tollector).

To perform the simulation, once we have declaredobject opt_simulation
(calledsimul), the command to perform the simulation is

simul.simulate(0,1,0);

that simulates the case of perfect orthogonal ere. It can be added to the code lines
shown in Section 5.

The functionsimulate is a member of the objecimul , and it uses all the
properties of the object defined in its construtt{see Section 5). Other members of
simul are variables in which the simulation results saged, and functions to read
them. These aspects will be discussed in the mexios.

During the simulation, the displayed output is:

Setting solar position OK

X0 =-2.95 OK
X0 =-2.9205 OK
x0 =-2.9891

x0 is the coordinatex from which the solar beam is shot; wher appears, the
analysis for that point is finished. The simulatiemds whenxo reaches the end of the
collector, at aboutirrorwidtn (with a little variation if there is a trackingrer). If the
printing of the process is not desired it can bsallied with the functiorvoid
opt_simulation::printoff() , sSimply inserting the command

simul.printoff();

before the simulation. The opposite command is
simul.printon();

that enables again the printing of the process.

In the simulation, the rays are shot on the mimod followed along all the
reflections and refractions due to all the surfaceshe system, until they become

19

negligible. The analysis of the single ray is fullyee-dimensional. When a ray hits a
refracting surface, two rays are generated: tHeatefd and the refracted ray, and both
of them are followed; a recursive “tree” of secanydays is built from the original ray
shot on the mirror. A maximum number of recursiernset, after which the rays are
neglected in all cases, but this number is almesenreached except in some very
particular cases (i. e. when total reflection imaasorbing media occurs). The energy
of all the neglected rays is saved in a variabkfuldor control. Two examples of the
multiple reflections and refractions that occur éoglass-covered receiver are shown in
Figure 3.

A solar beam is a set of rays that reproduce tker sogular distribution of energy.
The beam is built dividing the sun disk in a numbérannuli and placing in each
annulus a number of rays regularly spaced, witdmaom offset with respect to the next
annulus. The distribution is built as uniformly pessible in the solar disk; moreover,
after positioning the rays, a correction of therggeof the rays is applied, so as to fix
the dishomogeneity in the discretisation and setlitnb-darkened profile. The same
procedure is used to build the halo, with greaparcsrg. The number of annuli can be
set by the user, and the number of rays in a beapnoportional to the square of the
number of annuli. The default value of the numtearmuli is 10, corresponding to 385
rays for each sun beam.

The limb-darkened distribution used is shown iruiFeg4.

focal line (x=0, y=Focus)
-
< vertex line (x=0, y=0)

™ salar position vector

s H . X

...........................

Figure 2: Coordinate system used to pass the thersposition to thesimulate function.

20

Figure 3: Multiple reflections and refractions of an incident ray (the thick line) on the receiver glas
covering and on the absorbing surface (the mirrors below). Left: the ray hits directly the receiver
glass from above, and it is scattered. Right: theay comes from the mirror, with a small tracking

error.

7 solar disk -—— | — circumsolar aureole
~o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Angular distance from the centre of the sun (deg)

Figure 4: Distribution of the radiation intensity (in logarithmic scale) used to simulate the sun {I=
radiation intensity at the centre of the sun).

A number of solar beams is then shot on the caltestirface, at regular intervals,
from above the receiver (so the receiver shadowifert is reproduced, and the light
that hits directly the receiver is collected). Thenber of beams shot can be set by the

21

user, but it should be high enough to have a rathdormly distributed irradiation on
the collector (a minimum of 100 beams is recommdhdehe default value is 200. So,
in a default simulation a total of 77000 rays i®tsiThe time required, for normal
incidence and without introducing defects in thstemn, is less than 10 seconds on a 3
GHz Pentium 4 CPU, 2 MB RAM machine. But the tina@ éncrease strongly for high
tracking errors or strong inclinations.

If a wavelength analysis is performed, the sol&c#pm contained in the library is
discretised using a certain number of wavelengtbisby the user. For each wavelength,
the associatedfraction of energy is computed, and a ray is sBuice the spectrum
included in the library is given as a table of 9%&welengths, it is useless to set a number
of wavelengths higher than this. The default nundferavelengths is 1, meaning that
no wavelength analysis is performed; the wavelemjtthe rays is set to the mean
wavelength of the solar energy. If the defined agdtfunctions do not depend on the
wavelength — as is the case in almost all the el@sghown here — the wavelength data
are useless.

The setting of these and other simulation pararsetél be discussed in Section 10.

7. Results

The simulation computes the distribution of theiaaidn on the absorber. In order
to do that, the circumference of the absorberv&ldd into a certain number of equal
angular sectors, and when a ray is partially alesbrb a sector the absorbed energy is
added to the energy of that sector. To read theggrebsorbed in a sector, once the
simulation has been performed, there is an apphsittion:

double opt_simulation::get_absorber(int NumberSecto r;

The parametekumberSector IS an integer that gives the number of the sedtioe.
default number of sectors is 72, with an amplitati&®° each. The sectors are numbered
progressively starting from 0, starting from theinpoof the receiver opposite to the
collector and proceeding in counterclockwise digattwith 72 sectors, the two sectors
nearest to the collectors are the number 35 andr@bthe half-pipe facing the collector
goes from sector 18 to sector 53 included.

As an example, once the simulation has been doéng,possible to print on the
screen the energy absorbed between 175° and 189theicommand

cout<<simul.get_absorber(35);

or storing the distribution in an array calledtribEnergy ~ with the lines

double DistribEnergy[72];
for (int i=0; i<72; i++) DistribEnergy[i]=simul.get _absorber(i);

or saving the distribution in the filistrib_absorber_ec.dat , with the lines

ofstream of(“distrib_absorber_ec.dat”);
for (int i=0; i<72; i++) of<<simul.get_absorber(i)< <endl;

22

and using the file to plot the distribution withaghical applications, if desired.

The total direct normal irradiation (DNI) considéres unitary, the values of the
energy are partial efficiencies relative to eaattae The total efficiency relative to the
DNI is the sum of the energies absorbed in eactoselt can be obtained with the
command

simul.get_efficiency();

that returns @double between 0 and 1.

The distribution of the energy absorbed while thawg between the first and the
second concentric surface (if they are preserlsis saved: this choice is due to the fact
that usually this is the space occupied by thesgtasering, and the distribution of the
energy absorbed in the glass is often required.tBstis an “ad hoc” choice that of
course result useless if the receiver configuraiodifferent from the classical one, in
all the examples. The division in sector is the samed for the absorber, and the
function that reads the energy of a sector is amil

double opt_simulation::get_absorb_glass(int NumberS ector);

Another information that is saved is the energyt hise to neglecting rays when
they become negligible, or when there are too maweyrsions. The sum of all these
energies is saved and can be read with the function

double opt_simulation::get_rec_error();

This is a control function: the result must be msohaller than 1, otherwise the
simulation is unreliable. It igot an estimation of the error on the efficiency, tlsat
probably greater and is due to other factors (disation and numerical
approximations).

8. A second example

A slightly more complex example will now be showie system considered is the
same as in the preceding example: a collector 6ide,wvith a receiver of 7 cm of
diameter, covered by a glass of 13 cm of diam&aenm thick. The optical functions
are already defined in the fit@t_fun_definition.h , that is included.

The program performs a simulation with a trackimgpeof 0.01 rad, saves the
distribution of energy absorbed in the figtrib_absorber_ec.dat , and also saves
the energy absorbed by the glass in the diteib_glass_ec.dat ; then the total
collection efficiency is printed on the screen. fitee second simulation is performed
(turning off the progress output) with the sun @t 6f inclination with respect to the
collector plane, with no tracking error; the distrion of the absorbed energy, and the
energy absorbed by the glass, are printed on tleers@s two lists. Then the control
error obtained fromget_rec_error() is printed.

#include<iostream>
#include<fstream>

23

#include<cmath>

#include"SimulTrough.h"
#include"opt_fun_definition.h"

using namespace std;
int main() {
// initialization of the optical functions:
OPT_FUN_INIT;
/Il definitions of the geometrical parameters:
int NumSurface = 3;
double Focus = 1.8,
MirrorWidth = 3,
FreeSpace = 0.05;
double RadiiReceiver[] = {0.065, 0.062, 0.035};
Il the object simul is built:
opt_simulation simul(Focus, MirrorWidth, FreeSpace,
RadiiReceiver, ReflectMir, ReflectSurfaces,
Reflnd, Absorption);
[¥*** first simulation *****
cout<<"---- FIRST SIMULATION ----"<<endl<<endl;
/I tracking error of 0.01 rad:
double ErrorColl = .01;
simul.simulate(-sin(ErrorColl), cos(ErrorColl), 0

/l the energy distributions are saved in files:

ofstream of("distrib_absorber_ec.dat");
ofstream of2("distrib_glass_ec.dat");

for (int i=0; i<72; i++) {

of<<simul.get_absorber(i)<<endl;
of2<<simul.get_absorb_glass(i)<<endl;

/l output the total efficiency

cout<<endl<<"Efficiency = "<<simul.get_efficiency(
cout<<"Control error = "<<
simul.get_rec_error()<<endl<<endl<<endl;

/[***** second simulation *****

24

NumSurface,

)<<endl;

cout<<"---- SECOND SIMULATION ----"<<endl<<end];

/I printing of the simulation progress is disabled
simul.printoff();

/l inclination of the sun: PI/3 rad, no tracking er
double Incl = 3.141592/3.0;

simul.simulate(0, cos(Incl), -sin(Incl));

/I the distributions of absorbed energy are listed
cout<<"Energy distribution on the absorber:"<<endl;
for (int i=0; i<72; i++) cout<<"Energy absorbed bet

<<" and "<<5*(i+1)<<"° = "<<simul.get_absorber(i)<
cout<<endl;
cout<<"Distribution of the energy absorbed by the
for (int i=0; i<72; i++) cout<<"Energy absorbed bet
<<"® and "<<5*(i+1)<<" = "<<
simul.get_absorb_glass(i)<<endl;

/I calculation of the total energy absorbed by the
double e_glass=0;
for (int i=0; i<72; i++) e_glass += simul.get_absor

/I the efficiency, the fraction of energy absorbed

/l and the control error are printed:

cout<<endl<<"Efficiency = "<<simul.get_efficiency(
cout<<"Energy absorbed by the glass = "<<e_glass<<

cout<<"Control error = "<<
simul.get_rec_error()<<endl<<endl<<endl;

The output of the program will be:

---- FIRST SIMULATION ----
Setting solar position OK
x0 =-3.05189 OK

x0 =-3.02189 OK
X0 =-2.99189 OK

()

25

ror

ween "<<5%
<endl;

glass:"<<endl;
ween "<<5*

glass

b_glass(i);

by the glass,

)<<endl;
endl;

x0=2.94811 OK

Efficiency = 0.576216
Control error = 9.91601e-005

---- SECOND SIMULATION ----

Energy distribution on the absorber:
Energy absorbed between 0° and 5° = 0.000106122
Energy absorbed between 5° and 10° = 0.000111513

(..)

Energy absorbed between 355° and 360° = 0.000104573

Distribution of the energy absorbed by the glass:
Energy absorbed between 0° and 5° = 6.58859e-006
Energy absorbed between 5° and 10° = 6.69652e-006

(..)

Energy absorbed between 355° and 360° = 6.43763e-00 6

Efficiency = 0.192857
Energy absorbed by the glass = 0.00788523
Control error = 0.000310983

From the first simulation, we see that the efficiewith a tracking error of 0.01 rad
(0.57°) is 57.6%, with the optical properties ofctten 4 (the efficiency for perfect
normal incidence is 77.4%). The two files savedhis simulation can be used to plot
the distribution of energy absorbed by the absodper by the glass. From the second
simulation, we see that the control error (0.03%ohegligible, as expected, even for a
strong inclination. The efficiency is strongly reed due to the inclination of 60°, and it
is only 19.3%; it must be stressed that this edficly already includes the cosine factor
(in this case 0.5), since the simulation is cargatiwith a unitary DNI. The 0.8% of the
energy is absorbed by the glass.

We now can use the files saved in the first sinmuteato plot the energy distribution
with some graphical program. The distributions otgd from the first simulation in the
above example are shown in Figure 5.

9. Changing geometrical and optical parameters

All the geometrical and optical parameters of ajectbcan be read and modified.
The functions that reads the geometrical paramaterswith obvious meaning and use:

double opt_simulation::get_Focus();

double opt_simulation::get_MirrorWidth();

double opt_simulation::get_ NumSurface();

double opt_simulation::get_RadiiReceiver(int number _surface);
double opt_simulation::get_FreeSpace();

26

Distribution of the energy absorbed

for unitary irradiation (1/deg)

o

x
o
=

o
x
=)

o
©

o
®

o
b}

o
<)

o
~

o
w

o
N

=3
o

Energy absorbed by the glass (1/deg)

o

-150 -100 -50 0 50 100

-150 -100 50 0 50 100
Angular position on the receiver (deg) Angular position in the glass (deg)

Figure 5: Distribution of the energy absorbed by tle receiver (left) and by the glass (right), with a
tracking error of 0.01 rad (first simulation). The distribution of the energy in the glass shows some
irregularities, probably due to discretisation errors (the absorbed energy is very small, and the
simulation is not very accurate, lasting only 10 s®nds); the distribution would probably be
smoother with a higher number of steps. However, # precision is sufficient to build a good
distribution of the energy absorbed by the receivesurface (left).

The functionget_RadiiReceiver needs the number that identifies the considered
surface. As usual, the surfaces are numbered fnenotwtermost to the inmost, starting
from O.

The geometrical parameters, except the number rédcas (that will be discussed
later), can be modified with the functions

void opt_simulation::set_Focus(double newFocus);

void opt_simulation::set_MirrorWidth(double newMirr orWidth);

void opt_simulation::set_RadiiReceiver(int NumberSu rface,
double newRadius);

void opt_simulation::set_FreeSpace(double newFreeSp ace);

that overwrites the old valuese(RadiiReceiver requires the number of the surface
whose radius is modified). It should be pointed that changing a parameter does
automatically restart the simulation, and the tsspiteviously collected, if any, remains
unchanged until a new commasigiulate is given.

There is also the function

void opt_simulation::set_geometry(double newFocus,
double newMirrorWidth, double newFreeSpace,
double* newRadiiReceiver);

that performs all the changes in one command; hereRadiiReceiver ~ must be a
vector, with the list of the radii, from the outeorat to the inmost.

A more radical change can involve the number oftteatric surfaces: it is possible
to change it, but new optical functions must beigaexl, since their number (and
consequently the dimensions of the arrays of foncpointers) must change. All this
can be done with the function

void opt_simulation::set_ NumSurface(int newNumsSurfa ce,

27

double* newRadiiReceiver, reflect_s* list_ newRefl ectSurf,
refrac_index_function* list_newReflnd,
absorption_function* list_newAbsorption);

wherenewNumsSurface is the new number of concentric surfacesyRadiiReceiver IS
the new array of the radii of the concentric swefadst newReflectSurf is the
array of pointers to the reflectivity functions;_newRefind is the array of pointers
to the refractive indices, aniht_newAbsorption is the array of pointers to the
absorption functions.

The optical functions can also be changed one leyvath the following functions,
with obvious meaning

void opt_simulation::set_ReflectMirror(reflect_s ne wReflectMir);
void opt_simulation::set_ReflectSurfaces(int Number Fun, reflect_s
newReflectSurface);

void opt_simulation::set_Refracindex(int NumberFun,
refrac_index_function newReflndex);

void opt_simulation::set_Absorption(int NumberFun,
absorption_function newAbsorption);

whereNumberFun is the index of the array where the function mhesthanged. It must
be stressed that the arguments are all pointeigntdions, and not arrays of pointers:
the new optical functions are placed in the olaysr

In practical use, if many changes must be appledhe system, it may be
convenient to modify the fileopt_fun_definition.h and restart the simulation,
instead of acting on the optical functions from piegram.

Now, some examples of the functions described. h&t énd of the example of
Section 8, we can decide to change the focal let@th.5 m, and the radius of the
receiver to 4 cm instead of 3.5, and then perfomew simulation with the new data:
this can be made with the lines

simul.set_Focus(2.5);
simul.set_RadiiReceiver(2, 0.04);
simul.simulate(sin(ErrorColl), -cos(ErrorColl), 0);

or also

double newRadiiReceiver[] = {0.065, 0.062, 0.04};
simul.set_geometry(2.5, MirrorWidth, FreeSpace, new RadiiReceiver);
simul.simulate(sin(ErrorColl), -cos(ErrorColl), 0) ;

In the first case (recommended) we change the flarajth with the command
set_Focus , and the radius of the third surface (the couattstfrom 0!), that is the
absorber. In the second case, we define a new afragdii and we pass it to the
commandset_geometry , together with the new value of the focal lengtid @he old
values for the other parameters. The second meshowre cumbersome and requires
to define a new array.

Let us see yet another example. Suppose that,ctintieexperimental data or
making simulation, we have defined a new reflettifiinction for a dirty glass surface:
double reflect_dirty(double cosinc, double lambda) , and we desire to replace

28

the old reflectivity function for the external faoé the glass in order to simulate the
effect of exposition to dust and rain, and makemmarison with the clean glass. Once
the results for the clean glass have been savétk functionreflect_dirty is visible

to the program we can change the function of rafliég with the commands:

reflect_s new_refl = &reflect_dirty;
simul.set_ReflectSurfaces(0, new_refl);

In these lines we define a pointer of the tygfect_ s (a pointer to a reflectivity
function), we associate it with our new reflecyvitinction ¢eflect_dirty), and we
pass it to the array of the pointers to the refl@gt functions, in the first position.
(Then we should also change the reflectivity foysraoming from the glass, at the
position 1 of the array).

10. Technical parameters of the simulation

In the constructor of the objegbt_simulaton , shown in Section 5, there are also
other parameters, set to default values if omitiéolv we will discuss their meaning
and use.

int nAnnuli (default 10)

The solar disk is divided into circular annuli, baild the distribution of rays; in
each circular annulus a uniformly spaced distrdoutof rays is defined, with the
number of rays proportional to the radius and &@igpacing comparable to the width of
the annulus. The energy of the rays is then moeldld correct the discretisation errors
and to follow the limb-darkened model. A fractiohrays (the 10%) is used for the
halo, where the spacing is larger.

The quantityhAnnuli is the number of annuli in which the solar diskiggthe halo)
is divided. The higher is the number, the moreamif and well-reproduced is the solar
beam. The number of rays of each solar beam isopiiopal to the square ennuli ;
so, for example, if the number of annuli is incexhfrom 10 to 20, the simulation time
is multiplied by a factor 4; if it is increased30, the factor is 25.

int nSector (default 72)

It is the number of angular sectors in which thewnference of the receiver is
divided, to build the distribution of the absorbexergy. Increasing this number, the
resolution is higher, but if the number of rays@ high enough there can be purely
numerical fluctuations due to the discrete analy§iee number of sectors should be
adequate to the number of rays shot. By defaudt,cicumference is divided into 72
sectors of 5° of amplitude. Neither the total e#ficy precision nor the simulation time
are affected by changing this parameter; only thg the results are saved is changed.

It is worthwhile to remark that, changing the numbg§ors when a simulation
has been done, the old results are lost. The nuoflssctors must always be sefore
performing the simulation, i.e., before the commsindiate

29

intnStep (default 200)

It is the number of regular intervals in which ttalector width is divided; at the
edge of each of these intervals, a solar beamas #ficreasinghstep the radiation
distribution is more homogeneous and the precisheneases. The simulation time
grows linearly withnStep .

intnLambda (default 1)

When the wavelength dependence of the optical ptiepas considered, the solar
wavelength spectrum is discretised using a cerntambernLambda of wavelength (not
regularly spaced), and for each ray of the solanhea numbenLambda of rays with
defined wavelength and with the corresponding gnarg shot, summing the results at
the end. In the default case §mbda = 1) the wavelength dependence is not considered,;
if some of the functions are wavelength dependibet,wavelength considered is the
mean for the solar spectrum. Since the spectrutiheidibrary has 95 subdivisions, it is
useless to give a numba&rambda higher than 95.

The simulation time grows linearly with.ambda.

double LimitEnergy (default 1e-5)
When a ray has an energy smaller than this quantitig considered lost. The
simulation time increases wheimitEnergy is decreased.

int NRicLim (default 30)

A ray is reflected and refracted generating newsrdayeated with a recursive
procedure. To avoid infinite recursions, a limiicLim to the recursion level is set.
Usually, this limit has no effect on the simulati@xcept in very special cases (for
example, rays imprisoned by total reflection inoaabsorbing medium).

double Offset (default 1e-5)

It is the initial offset of the rays starting from surface, to avoid computing a
spurious intersection with the starting surfacefaand. It must be less than the
minimum distance between two surfaces of the systiénmas no effects on the
simulation precision and time.

If the desired parameters are different from thiaule parameters, one can define
the new parameters directly when building the dbjeassing values that overwrite the
default ones. As an example, with the command

opt_simulation simul(Focus, MirrorWidth, FreeSpace, NumSurface,
RadiiReceiver,ReflectMir, ReflectSurfaces, Reflnd, Absorption,
20, 90, 500, 10);

(where all the variables are defined as in theiptesvtwo examples) an objegitul is
created, with the sun divided in 20 annuli, thaultssare saved in 90 angular sectors of
4°, the simulation is made shooting 500 solar beants 10 wavelengths for each ray
are considered.

All these parameters can also be changed for astimxiobject, with apposite
functions. Some of them are important for the usmed will probably be changed
frequently GAnnuli, nSector, nStep, nLambda), while others probably will not

30

(NRicLim, Offset). However, functions that read and modify all fegameters are
defined in any case. The functions to read therperars are, with obvious meaning,

int opt_simulation::get_nAnnuli();

int opt_simulation::get_nSector();

int opt_simulation::get_nStep();

double opt_simulation::get_LimitEnergy();
int opt_simulation::get_NRicLim();

double opt_simulation::get_Offset();

int opt_simulation::get_nLambda();

and there is also the function

int opt_simulation::get_nSolarRay();

that returns the total number of rays of a solanibeThe functions to modify the
parameters are

void opt_simulation::set_nAnnuli(int new_nAnnuli);

void opt_simulation::set_nSector(int new_nSector);

void opt_simulation::set_nStep(int new_nStep);

void opt_simulation::set_LimitEnergy(double new_Lim itEnergy);
void opt_simulation::set_NRicLim(int new_NRicLim);

void opt_simulation::set_Offset(int new_Offset);

void opt_simulation::set_nLambda(int new_nLambda);

Moreover, a function to modify all the technicalrameters at once is defined:

void opt_simulation::set_param_simulation(int nAnnu li =10,
int nSector = 72,
int nStep = 200,
int nLambda = 1,
double LimitEnergy = 1e-5,
int NRicLim = 30,
double Offset = 1e-5);

Remark: using this function, if some of the lastuea are omitted, they do not
remain unchanged, but they return to the defauliesm as it can be seen from the
declaration.

11. Simulation of defects of the system

It is possible to simulate systems with defects,aasout-of-focus receiver or
deformations of the mirror. The following defectsxde simulated.

Defocalisation:
The centre of the receiver is not in the focus. &hrer can be introduced with the
function

void opt_simulation::set_ErrorDefoc(double ErrorDef 0C_X,
double ErrorDefoc_y);

31

ErrorDefoc_x and ErrorDefoc_y are the displacements with respect to the
correct position, in the directionsandy, respectively. As an example, if the receiver is
a centimeter under the focus (towards the coll¢eod two centimeters to the right, the
displacements arerrorDefoc_x = 0.02 , ErrorDefoc_y = -0.01 . To introduce this
defect in the system described by the objeail , the command is

simul.set_ErrorDefoc(0.02,-0.01);

Transverse random error on the mirror inclination:

The inclination of the surface of the mirror, iretharabolic section, is changed of a
random quantity with a Gaussian distribution. Ttrdduce this error, with standard
deviationsigma , there is the function

void opt_simul::set_ErrorGaussTrasv(double sigma);

Longitudinal random error on the mirror inclination

The inclination of the surface of the mirror, irettirection parallel to the focal line,
is changed of a random quantity with a Gaussiatrilgigion. To introduce this error,
with standard deviatiosigma , there is the function

void opt_simul::set_ErrorGaussLong(double sigma);

The two random errors just seen can describe tladityjwof construction of the
mirror, or damages and deformations on a smallesdaiey can be different to each
other, since there can be directional effects.

Transverse large-scale deformations:

They are the large-scale deformations of the pdiabection, that can be caused by
the supports, thermal stress or gravity effectsalso by a non-perfect building of the
mirror.

The difference between the real inclination andttie®retical one must be given as
a Fourier inclination in the cosine, with a certaumberN of harmonics:

X+L
2L

N-1
A= a cosj, (=
i=0

(is a variable between 0 and 1, and it is the ix@gtosition on the collecto;=0
whenx= -, (=1 whenx=L. The cosine paramenter varies from 0 (wikenrl) to j1t
(whenx=L). The quantityA@ is the angle of deviation from the correct inclioa, in
counterclockwise direction, at the relative pajntThe use of the Fourier harmonics is
chosen because many typical deformations can b@xppated well by a very limited
number of harmonics, as it is shown in the exarbplew.

To introduce the error, one must give the nunibef harmonics, and an array f
double , the coefficientsy. The functions

void opt_simulation::set_ErrorTrasv(int NumberHarm,
double* CoeffHarm);

32

receives the numbé&t (NumberHarm) and the array of thg (CoeffHarm).

As an example, we can build a “double-focus” defation, in which each of the
two halves of the mirror has a curvature that ighslly greater than the correct one,
creating (approximately) two secondary focuses Wwiaie slightly closer to the mirror
than the correct focus. A profile that reprodudas tleformation quite well, shown in
Figure 6, is proportional tesin(3r); the error on the inclination, for small angles
(when tar# can be approximated b, will be proportional to-cos(3w). Supposing
that the maximum error on the inclination is 0.Gid,r the deviationA@ will be
—-0.01cos(3K). So, we need four harmonies, a; anda, will be 0, andag=—-0.01. We
haveN=4, a={0,0,0,-0.01}. In a program, we could introduce this defation with the
commands

double ¢_harm[] = {0,0,0,-0.01};
simul.set_ErrorTrasv(4,c_harm);

where we first define the array of the harmonicfitcoents and then we pass it to the
functionset_ErrorTrasv ~ , specifying its size.

&Y

defarmed
parabolic
profile

&Yy

error on the
- inclination

Figure 6: Example of a “double-focus” deformation.Above: the deformed parabolic profile (thick
red line) compared with the correct profile (the déormation is exaggerated). Below: the error on
the mirror inclination, proportional to —cos(3W).

A function to introduce all the errors at the samme is also defined:

void opt_simulation::set_Errors(double ErrorDefoc_x
double ErrorDefoc_y, double ErrorGaussTrasv,
double ErrorGaussLong, int NumberHarm, double* Coef fHarm);

It is also possible to define directly the systeafedts when the class is created,
using the constructor, as can be seen from thedeicn of the constructor shown in

33

Section 5; the last five parameters of the construare the defects described here (with
the same name used here in the declaration otittatidns); the default situation has no
defects. But this procedure can be quite tedidnsesall the parameters before the last
five must be given explicitly. Maybe it is bettéoy simplicity of use and readability, to
give only the first 9 mandatory parameters to thiestructor, and modify afterwards all
the other parameters which are different from thiaualt.

The reading functions are also defined, which thadsalues in the object:

double opt_simulation::get_ErrorDefoc_x();

double opt_simulation::get_ErrorDefoc_y();

double opt_simulation::get_ErrorGaussTrasv();
double opt_simulation::get_ErrorGaussLong();

int opt_simulation::get_ErrorNumberHarm();

double opt_simulation::get_ErrorHarm(int indexHarm)

indexHarm is the index in the arrayoeffHarm of the Fourier coefficient that one would
like to know; it can go frono to NumberHarm-1 .

12. Shadowing

It can happen that the collector is partially shvaeld by obstacles or by the adjacent
string of collectors. This situation does not requa modification of the object
opt_simulation , but it can be handled directly at the momenthef $imulation using
the two last parameters of the functimulate

void opt_simulation::simulate(double x, double y, d ouble z,
double shadow_sx = 0, double shadow_dx = 0);

The parameteshadow_sx is thefraction of the collector width shadowed towards
the left edge (whene= -Mirrorwidth), andshadow_dx is the fraction of the collector
width covered towards the right edge € Mirrorwidth). As an example,
shadow_sx=0.5 means that the part of collector witklirrorwidth< x<0 is shadowed,
and the rays are shot only on the other half.

The “fraction of collector width” is referred to éhopening of the collector (the
planey=Mirrorwidth /). So, if we seshadow_dx=0.1 , the rays that are not shot due to
the shadowing are the ones that cross this platb@eba x=0.8*Mirrorwidth and
X=MirrorWidth

As an example, we can consider a field of collestperfectly collimated, with a
spacing of 1.5 times their openings between rowsoliéctors. Suppose that the sun is
low on the horizon and that the collectors musttihed of 60° with respect to the
vertical direction, to face the sun correctly. hmstcase, each collector will shadow
exactly a quarter of the collector behind it, asvah in Figure 7. This situation can be
reproduced by settinghadow_dx=0.25 :

simul.simulate(0,cos(Incl),-sin(Incl), 0, 0.25);

(Incl is the inclination of the sun with respect to tb@lector plane). With this
command, only the solar beams in the first threstgus of the collector will be shot.

34

If the two shadowing parameters are omitted, threyst to the default value O,
which means that the collector is completely exgdsethe sun.

/%;Q\

Figure 7: Shadowing of a collector by a parallel rav of collectors.

13. Final Example

Now a final, long example will be shown, using mostthe features previously
discussed. Also, two additional optical functiondl \Wwe defined at the beginning, and
then they will replace two of the functions defineth the header
opt_fun_definition.h . The detailed explanation of the program is giventhe
comments.

#include<iostream>
#include<fstream>
#include<cmath>

#include"SimulTrough.h"
#include"opt_fun_definition.h"

/I a reflectivity function depending on the wavelen gth is defined
/1 (it will be used in the third simulation):
double reflect_new(double cosinc, double lambda) {
return .05+.05*lambda/10000;
}

/I a refractivity function depending on the wavelen gth is defined
/1 (it will be used in the third simulation):
double refract_new(double lambda) {

35

return 1.5+.1*lambda/10000;

using namespace std;
int main() {
// initialization of the optical functions:

OPT_FUN_INIT;

/Il definition of the geometrical parameters:
int NumSurface = 3;
double Focus = 1.8,
MirrorWidth = 3.0,
FreeSpace = 0.05;
double RadiiReceiver[] = {0.065, 0.062, 0.035};
Il the object simul is built:
opt_simulation simul(Focus, MirrorWidth, FreeSpace,
RadiiReceiver, ReflectMir, ReflectSurfaces, Reflnd,
Absorption);
[¥*** first simulation *****
cout<<"---- FIRST SIMULATION ----"<<endl<<endl;
/I tracking error of 0.01 rad:
double ErrorColl = .01;
simul.simulate(-sin(ErrorColl), cos(ErrorColl), 0

/I the energy distributions are saved in files:

ofstream of("distrib_absorber_1.dat");
ofstream of2("distrib_glass_1.dat");

for (int i=0; i<72; i++) {
of<<simul.get_absorber(i)<<endl;
of2<<simul.get_absorb_glass(i)<<endl;

}

/l output the total efficiency
cout<<endl<<"Efficiency = "<<simul.get_efficiency()
Il the control error is printed:

cout<<endl<<"Control error = "<<
simul.get_rec_error()<<endl<<endl<<endl;

36

NumSurface,

<<endl;

[l ***** second simulation *****

cout<<"---- SECOND SIMULATION ----"<<endl<<endl;

/I printing of the simulation progress is disabled
simul.printoff();

/I the width of the mirror is reduced to 4 m, and t
/I set to 8 cm of diameter instead of 7:

simul.set_MirrorWidth(2.0);
simul.set_RadiiReceiver(2,0.04);

Il the precision is enhanced: the sun is divided in
/l and 500 beams are shot

simul.set_nAnnuli(20);
simul.set_nStep(500);

/I after these changes, we check the number of rays
/l beam printing it on the screen:

cout<<"Rays of a solar beam = "<<
simul.get_nSolarRay()<<endl<<endl;

I since the number of rays has been increased, we
I resolution of the energy distribution figure on
// we double the number of sectors (144 sectors of

simul.set_nSector(144);

/I the receiver is out of focus: 2 cm below and 3 ¢
/I of the correct focus

simul.set_ErrorDefoc(0.03, -0.02);
/l the mirror surface is also slightly irregular, w
Il deviation of 0.005 rad with respect to the corre
/l'in the transverse section:
simul.set_ErrorGaussTrasv(0.005);
/l inclination of the sun: 30°, no tracking error

double Incl = 3.141592/6; /] =P1/6

I/l we also suppose that the final quarter of the co
Il is shadowed by some obstacles:

double sh_dx=0.25;
Il simulation:
simul.simulate(0, cos(Incl), -sin(Incl), 0, sh_dx

/I the distributions of absorbed energy are printed
/I the function get_nSector() to know how many sect

37

he absorber is

20 annuli

of a solar

can change the
the receiver:
2.5°

m at the right

ith a standard

ct inclination

llector opening

);

, using
ors should be

/I listed and how wide they are
cout<<"Energy distribution on the absorber:"<<endl;

int num_Sector=simul.get_nSector();
double width_Sector=360/num_Sector;// width of an
/l'in degrees

for (int i=0; i<num_Sector; i++) cout<<
"Energy absorbed between "<<width_Sector*i<<
"> and "<<width_Sector*(i+1)<<"® = "<<
simul.get_absorber(i)<<endl;

/I the distribution of the energy absorbed by the g
/I also listed:

cout<<endl<<

"Distribution of the energy absorbed by the glass:"

for (int i=0; i< num_Sector; i++) cout<<
"Energy absorbed between "<<width_Sector*i<<
"o and "<<width_Sector*(i+1)<<"® = "<<
simul.get_absorb_glass(i)<<endl;
/I the total efficiency is printed
cout<<endl<<"Efficiency = "<<simul.get_efficiency()
Il the control error is printed:

cout<<endl<<"Control error = "<<
simul.get_rec_error()<<endl<<endl<<endl;

/I the distributions of energy are saved in files:

ofstream of3("distrib_absorber_2.dat");
ofstream of4("distrib_glass_2.dat");

for (int i=0; i<num_Sector; i++) {

of3<<simul.get_absorber(i)<<endl;
of4<<simul.get_absorb_glass(i)<<endl;

/1 ***** third simulation *****
cout<<"---- THIRD SIMULATION ----"<<endl<<endlI;

/I we use the same geometry as in the second simula
// but we remove the defects previously introduced:

simul.set_ErrorGaussTrasv(0);
simul.set_ErrorDefoc(0,0);

/I we introduce instead a double-focus deformation:

double harm[] ={0,0,0,-0.01};
simul.set_ErrorTrasv(4,harm);

38

angular sector

lass is

<<endl;

tion,

<<endl;

/I we change the reflectivity function of the exter
Il the glass (element O of the array) with the new
/I defined:

Il we first associate the function with a pointer o
I type (reflect_s) and then pass it to the functio

/I set_ReflectSurface:

reflect_s newrefl = &reflect_new;
simul.set_ReflectSurfaces(0,newrefl);

/l we also change the refractive index of the glass
/I wavelength dependence (the glass is the medium 1
/l air, glass, vacuum)

refrac_index_function newrefrac = &refract_new;
simul.set_Refracindex(1, newrefrac);

Il since we introduced wavelength dependence in som
I functions, it is advisable to enable wavelength
/I choose to shoot 10 rays of different wavelengths
I ray of the beam
simul.set_nLambda(10);
/ to save time, we reduce the precision
simul.set_nAnnuli(10);
simul.set_nStep(200);
simul.set_nSector(72);
/l we enable the process printing:
simul.printon();
/I simulation, with normal incidence and no shadowi
simul.simulate(0,1,0);
/I the total efficiency is printed
cout<<endl<<"Efficiency = "<<simul.get_efficiency()

Il the control error is printed:

cout<<endl<<"Control error = "<<
simul.get_rec_error()<<endl<<endl<<endl;

/I the distributions of energy are saved in files:
num_Sector = simul.get_nSector();

ofstream of5("distrib_absorber_3.dat");
ofstream of6("distrib_glass_3.dat");

for (int i=0; i<num_Sector; i++) {

of5<<simul.get_absorber(i)<<endl;
ofé<<simul.get_absorb_glass(i)<<endl;

39

nal face of
function

f the correct
n

, introducing
: the order is

e optical
analysis: we
for each solar

ng:

<<endl;

[l ***** fourth simulation *****
cout<<"---- FOURTH SIMULATION ----"<<endl<<endl;

/I here, a more drastic change is made: the receive
I/l and the number of concentric surfaces changes fr
/I pointers for the optical functions must be conse

/I For the absorber, we use the same reflectivity f

/I in opt_fun_definition.h, and called ReflectAbsor

/I Section 5 of the user guide). The arrays of the

/I of refraction and of the absorption functions ar

/l composed of one element (the air); we use the sa
Il defined in opt_fun_definition.h (Reflndex_air

/I and Absorption_air).

double newRadiiReceiver[] = {0.04}; // new array of
/I new arrays of optical functions:

reflect_s NewArrayRefl[1];

NewArrayRefl[0] = &ReflectAbsorber;

refrac_index_function NewArrayRefrac[1];

NewArrayRefrac[0]= &Reflndex_air;

absorption_function NewArrayAbsorption[1];

NewArrayAbsorption[0]= &Absorption_air;

simul.set_ NumSurface(1, newRadiiReceiver, NewArrayR
NewArrayRefrac, NewArrayAbsorption);

I/ since none of the optical functions has waveleng
/I the wavelength analysis can be disabled:

simul.set_nLambda(1);

/I we eliminate the double-focus error
simul.set_ErrorTrasv(0,0);

/ now we have a simple system with naked receiver
/I defects; since the system is simple (fast calcul
/I we enhance the precision:

simul.set_nAnnuli(30);
simul.set_nStep(1000);

Il sectors of only 1°
simul.set_nSector(360);
/l simulation, with normal incidence and no shadowi
simul.simulate(0,1,0);
/I the distribution of energy absorbed by the absor
/I listed, using the function get_nSector() to know

/I many sectors should be listed and how wide they

cout<<"Energy distribution on the absorber:"<<endl;

40

r is uncovered,
om 3to 1. New
quently defined.
unction defined
ber (see
indices

e now only

me functions

radii

efl,

th dependence,

and without
ation)

ng:

ber surface is
how
are

num_Sector=simul.get_nSector();
width_Sector=360/num_Sector; // width of an angula r sector
/l'in degrees

for (int i=0; i<num_Sector; i++) cout<<
"Energy absorbed between "<<width_Sector*i<<
"e and "<<width_Sector*(i+1)<<"® = "<<
simul.get_absorber(i)<<endl;

/I the distribution of the energy "absorbed by the glass" is also
Il listed: in this case there is no glass, and the library manages
/I this situation returning a list of zeros

cout<<endl<<
"Distribution of the energy absorbed by the (absent)
glass:"<<endl;

for (int i=0; i< num_Sector; i++) cout<<
"Energy absorbed between "<<width_Sector*i<<
"> and "<<width_Sector*(i+1)<<"® = "<<
simul.get_absorb_glass(i)<<endl;

/I the total efficiency is printed
cout<<endl<<"Efficiency = "<<simul.get_efficiency() <<endl;
Il the control error is printed:

cout<<endl<<"Control error = "<<
simul.get_rec_error()<<endl<<endl<<endl;

Il the energy distribution is saved in a file:
ofstream of 7("distrib_absorber_4.dat");

for (int i=0; i<num_Sector; i++) {
of7<<simul.get_absorber(i)<<endl;
}

At the end of the execution, there will be 7 filmmntaining the data on the energy
distributions, four distrib_absorber_1.dat , distrib_absorber_2.dat ,
distrib_absorber_3.dat , distrib_absorber_4.dat) containing the distribution of
the energy usefully absorbed by the receiver, dméet (istrio_glass_1.dat ,
distrib_glass_2.dat , distrib_glass_3.dat) with the energy absorbed by the glass.
The data can be plotted with graphical applicatiand compared, to see the effect of
the parameter changes, of the shadowing and gdfasiéon of the sun.

This table is a summary of the four simulationstlod example, with the time
required on a Pentium 4, 3.06 GHz machine, andebdting efficiency:

41

Distribution of the energy absorbed

Geometric Defects Simulation Sun position Simulation | Efficiency
properties parameters time

Simulation 1 | Coll. Width: 3 m | None Steps: 200 (-sin 0.01, cos 0.01, 0} 10s 57.62%
Surfaces: 3 Annuli: 10 (tracking error)
Radii: 6.5 cm, 6.2
cm, 3.5cm

Simulation 2 | Coll. Width: 2 m | Transverse Steps: 500 (0, cosrU6, sinTv6) 135s 23.33%
Surfaces: 3 random error; | Annuli: 20 (sun inclination)
Radii: 6.5 cm, 6.2 defocalisation;
cm, 4 cm shadowing

Simulation 3 | Coll. Width: 2 m | Double-focus Steps: 200 0,1,0) 105s 47.25%
Surfaces: 3 deformation Annuli: 10
Radii: 6.5 cm, 6.2 Wavelength
cm, 4 cm analysis (10

wavelengths)

Simulation 4 | Coll. Width: 2 m | None Steps: 1000 | (0, 1,0) 65s 84.58%
Surfaces: 1 Annuli: 30
Radius: 4 cm

The following figures (Figure 8-11) show the distriions of energy obtained.

&
ES
-
o,

o

o
S

(=)
©

~

L)
3]

(=
[

=
q

&)

b
S

N

2

for unitary irradiation (1/deg)

o

(=)
15

EanE e S
-100

o

-50 0

(=)
)

(=]
IS

i
w

(=)
S

(=)
S

50 100
Angular position on the receiver (deg)

Energy absorbed by the glass (1/deg)

o

B3
S
<,

-100 50
Angular position

Figure 8: Distributions obtained from the first simulation.

42

0 50 100
in the glass (deg)

o
(5

(=]

for unitary irradiation (1/deg)

Distribution of the energy absorbed

Distribution of the energy absorbed
for unitary irradiation (1/deg)

N

S
3}

N

o
(5]

=)
5

-100 -50 0 50 100
Angular position on the receiver (deg)

~
x
=
o

o

&)

&~

w

N

Energy absorbed by the glass (1/deg)

-100 -50 0 50 100
Angular position in the glass (deg)

Figure 9: Distributions obtained from the second snulation.

-100 -50 0 50 100
Angular position on the receiver (deg)

Energy absorbed by the glass (1/deg)

-100 -50 0 50 100
Angular position in the glass (deg)

Figure 10: Distributions obtained from the third simulation.

x10

=

=

@

&)

w

N

for unitary irradiation (1/deg)

Distribution of the energy absorbed

-150 -100 -50 0

50 100 150

Angular position on the receiver (deg)

Figure 11: Distribution obtained from the fourth simulation.

43

Appendix: GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inatp://fsf.org/>
Everyone is permitted to copy and distribute varbatopies of this license document, but changing
it is not allowed.

Preamble

The GNU General Public License is a free, copyieénse for software and other kinds of works.

The licenses for most software and other practicaks are designed to take away your freedom to
share and change the works. By contrast, the Ghe@l Public License is intended to guarantee your
freedom to share and change all versions of a pnegto make sure it remains free software fortall i
users. We, the Free Software Foundation, use Mid General Public License for most of our software;
it applies also to any other work released this tajts authors. You can apply it to your progratos.

When we speak of free software, we are referrirfgg@dom, not price. Our General Public Licenses
are designed to make sure that you have the fre¢dahistribute copies of free software (and chdaye
them if you wish), that you receive source codecam get it if you want it, that you can change the
software or use pieces of it in new free prograansl, that you know you can do these things.

To protect your rights, we need to prevent otheosnfdenying you these rights or asking you to
surrender the rights. Therefore, you have cergdponsibilities if you distribute copies of thdtaare,
or if you modify it: responsibilities to respecetfreedom of others.

For example, if you distribute copies of such agpam, whether gratis or for a fee, you must pass on
to the recipients the same freedoms that you redeiwvou must make sure that they, too, receiveaar
get the source code. And you must show them tieeses so they know their rights.

Developers that use the GNU GPL protect your righith two steps: (1) assert copyright on the
software, and (2) offer you this License giving yegal permission to copy, distribute and/or modlify

For the developers' and authors' protection, the &®arly explains that there is no warranty fasth
free software. For both users' and authors' ghkeGPL requires that modified versions be marked a
changed, so that their problems will not be attéblerroneously to authors of previous versions.

Some devices are designed to deny users accesstal br run modified versions of the software
inside them, although the manufacturer can do Bais is fundamentally incompatible with the aim of
protecting users' freedom to change the softwaitee systematic pattern of such abuse occurs iarde
of products for individuals to use, which is pretyswhere it is most unacceptable. Therefore, aeech
designed this version of the GPL to prohibit thagbice for those products. If such problems arise
substantially in other domains, we stand readyterel this provision to those domains in futuresians
of the GPL, as needed to protect the freedom akuse

Finally, every program is threatened constantlysbftware patents. States should not allow patents
to restrict development and use of software on igdsprirpose computers, but in those that do, wé wis
to avoid the special danger that patents applieal fiee program could make it effectively propnigta
To prevent this, the GPL assures that patents ¢dreosed to render the program non-free.

The precise terms and conditions for copying, iistion and modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU Geh&ublic License.

"Copyright" also means copyright-like laws that Bppgo other kinds of works, such as
semiconductor masks.

"The Program" refers to any copyrightable work fised under this License. Each licensee is
addressed as "you". "Licensees" and "recipientsy be individuals or organizations.

To "modify" a work means to copy from or adapt @l part of the work in a fashion requiring
copyright permission, other than the making of &ace copy. The resulting work is called a "modifie
version" of the earlier work or a work "based dmé earlier work.

A "covered work" means either the unmodified Praga a work based on the Program.

44

To "propagate” a work means to do anything withhat, without permission, would make you
directly or secondarily liable for infringement werdapplicable copyright law, except executing itan
computer or modifying a private copy. Propagatincludes copying, distribution (with or without
modification), making available to the public, andsome countries other activities as well.

To "convey" a work means any kind of propagatioat thnables other parties to make or receive
copies. Mere interaction with a user through a poter network, with no transfer of a copy, is not
conveying.

An interactive user interface displays "Appropriaggal Notices" to the extent that it includes a
convenient and prominently visible feature thatdisplays an appropriate copyright notice, andt¢it¥
the user that there is no warranty for the workcégt to the extent that warranties are providd®t t
licensees may convey the work under this Licensd, lrow to view a copy of this License. If the
interface presents a list of user commands or pgtisuch as a menu, a prominent item in the ligttsne
this criterion.

1. Source Code.

The "source code" for a work means the preferrech fof the work for making modifications to it.
"Object code" means any non-source form of a work.

A "Standard Interface" means an interface thatkeeiih an official standard defined by a recognized
standards body, or, in the case of interfaces ipédor a particular programming language, ond tha
widely used among developers working in that laggua

The "System Libraries" of an executable work inel@hything, other than the work as a whole, that
(a) is included in the normal form of packaging ajM Component, but which is not part of that Major
Component, and (b) serves only to enable use oivtrk with that Major Component, or to implement a
Standard Interface for which an implementationvisilable to the public in source code form. A "Miaj
Component”, in this context, means a major esderdgimponent (kernel, window system, and so on) of
the specific operating system (if any) on which ¢xecutable work runs, or a compiler used to preduc
the work, or an object code interpreter used taittun

The "Corresponding Source" for a work in object &ddrm means all the source code needed to
generate, install, and (for an executable work) tha object code and to modify the work, including
scripts to control those activities. However, died not include the work's System Libraries, oregaln
purpose tools or generally available free programmich are used unmodified in performing those
activities but which are not part of the work. Fetample, Corresponding Source includes interface
definition files associated with source files ftwetwork, and the source code for shared libranes a
dynamically linked subprograms that the work iscéfieally designed to require, such as by intimaaga
communication or control flow between those subpaots and other parts of the work.

The Corresponding Source need not include anyttiiagusers can regenerate automatically from
other parts of the Corresponding Source.

The Corresponding Source for a work in source doda is that same work.

2. Basic Permissions.

All rights granted under this License are grantedtiie term of copyright on the Program, and are
irrevocable provided the stated conditions are m@&his License explicitly affirms your unlimited
permission to run the unmodified Program. The oufpm running a covered work is covered by this
License only if the output, given its content, ditoges a covered work. This License acknowledges
rights of fair use or other equivalent, as provitgaopyright law.

You may make, run and propagate covered worksythatlo not convey, without conditions so long
as your license otherwise remains in force. Yoy nenvey covered works to others for the sole psepo
of having them make modifications exclusively fauy or provide you with facilities for running thes
works, provided that you comply with the terms litLicense in conveying all material for which you
do not control copyright. Those thus making orning the covered works for you must do so
exclusively on your behalf, under your directiordasontrol, on terms that prohibit them from making
any copies of your copyrighted material outsidertredationship with you.

Conveying under any other circumstances is perdistglely under the conditions stated below.
Sublicensing is not allowed; section 10 makes itag@ssary.

3. Protecting Users' Legal Rights From Anti-Circiamtion Law.

45

No covered work shall be deemed part of an effectechnological measure under any applicable
law fulfilling obligations under article 11 of th&IPO copyright treaty adopted on 20 December 1886,
similar laws prohibiting or restricting circumveaii of such measures.

When you convey a covered work, you waive any legaWer to forbid circumvention of
technological measures to the extent such circutiorens effected by exercising rights under this
License with respect to the covered work, and ydsclaim any intention to limit operation or
modification of the work as a means of enforcingaiast the work's users, your or third partiesaleg
rights to forbid circumvention of technological nseges.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program'scggode as you receive it, in any medium,
provided that you conspicuously and appropriatelylish on each copy an appropriate copyright nptice
keep intact all notices stating that this Licensé any non-permissive terms added in accord withicze
7 apply to the code; keep intact all notices ofdheence of any warranty; and give all recipientsy
of this License along with the Program.

You may charge any price or no price for each dbpy you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, ontbdifications to produce it from the Program,
in the form of source code under the terms of eac#l, provided that you also meet all of these
conditions:

a) The work must carry prominent notices statiraj yfou modified it, and giving a relevant date.

b) The work must carry prominent notices statingt ti is released under this License and any
conditions added under section 7. This requiremadifies the requirement in section 4 to "keepdht
all notices".

¢) You must license the entire work, as a wholejenrthis License to anyone who comes into
possession of a copy. This License will therefapely, along with any applicable section 7 adddion
terms, to the whole of the work, and all its paregardless of how they are packaged. This Licghaes
no permission to license the work in any other vimy, it does not invalidate such permission if yave
separately received it.

d) If the work has interactive user interfaces heatist display Appropriate Legal Notices; however,
if the Program has interactive interfaces that dbdisplay Appropriate Legal Notices, your work dee
not make them do so.

A compilation of a covered work with other separatel independent works, which are not by their
nature extensions of the covered work, and whiehrast combined with it such as to form a larger
program, in or on a volume of a storage or distitbu medium, is called an "aggregate" if the
compilation and its resulting copyright are notdise limit the access or legal rights of the comuiln's
users beyond what the individual works permit. ldemn of a covered work in an aggregate does not
cause this License to apply to the other partd®@Biggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code formdar the terms of sections 4 and 5, provided
that you also convey the machine-readable CorrepgrSource under the terms of this License, in one
of these ways:

a) Convey the object code in, or embodied in, asfay product (including a physical distribution
medium), accompanied by the Corresponding Sousea fon a durable physical medium customarily
used for software interchange.

b) Convey the object code in, or embodied in, asgia} product (including a physical distribution
medium), accompanied by a written offer, valid &rdeast three years and valid for as long as yfar o
spare parts or customer support for that produdeihdo give anyone who possesses the object code
either (1) a copy of the Corresponding Source fothe software in the product that is covered hig t
License, on a durable physical medium customasigdufor software interchange, for a price no more
than your reasonable cost of physically perforntinig conveying of source, or (2) access to copy the
Corresponding Source from a network server at @ogeh

¢) Convey individual copies of the object code withcopy of the written offer to provide the
Corresponding Source. This alternative is allowaty occasionally and noncommercially, and only if
you received the object code with such an offegdoord with subsection 6b.

46

d) Convey the object code by offering access frodesignated place (gratis or for a charge), and
offer equivalent access to the Corresponding Saarttee same way through the same place at noefurth
charge. You need not require recipients to copyGbrresponding Source along with the object cdtle.
the place to copy the object code is a networkeseithe Corresponding Source may be on a different
server (operated by you or a third party) that suspequivalent copying facilities, provided you
maintain clear directions next to the object codgireg where to find the Corresponding Source.
Regardless of what server hosts the Correspondingc®, you remain obligated to ensure that it is
available for as long as needed to satisfy thepainements.

e) Convey the object code using peer-to-peer tregséom, provided you inform other peers where
the object code and Corresponding Source of th& e being offered to the general public at nagha
under subsection 6d.

A separable portion of the object code, whose swade is excluded from the Corresponding
Source as a System Library, need not be includedrineying the object code work.

A "User Product" is either (1) a "consumer produgthich means any tangible personal property
which is normally used for personal, family, or kehold purposes, or (2) anything designed or smid f
incorporation into a dwelling. In determining whet a product is a consumer product, doubtful cases
shall be resolved in favor of coverage. For aipaldar product received by a particular user, "nalfyn
used" refers to a typical or common use of thad<laf product, regardless of the status of thaqudat
user or of the way in which the particular useually uses, or expects or is expected to use, rihadugt.

A product is a consumer product regardless of varethe product has substantial commercial, indalstri
or non-consumer uses, unless such uses represanilthsignificant mode of use of the product.

"Installation Information” for a User Product measy methods, procedures, authorization keys, or
other information required to install and executedified versions of a covered work in that User
Product from a modified version of its CorrespogdBource. The information must suffice to ensure
that the continued functioning of the modified altjeode is in no case prevented or interfered sollly
because modification has been made.

If you convey an object code work under this sectim or with, or specifically for use in, a User
Product, and the conveying occurs as part of asaetion in which the right of possession and usthef
User Product is transferred to the recipient inpptrity or for a fixed term (regardless of how the
transaction is characterized), the Correspondingc®oconveyed under this section must be accomganie
by the Installation Information. But this requiremt does not apply if neither you nor any thirdtypar
retains the ability to install modified object code the User Product (for example, the work hasibee
installed in ROM).

The requirement to provide Installation Informatidoes not include a requirement to continue to
provide support service, warranty, or updates fovaak that has been modified or installed by the
recipient, or for the User Product in which it liseen modified or installed. Access to a networly i@
denied when the modification itself materially aadversely affects the operation of the network or
violates the rules and protocols for communicatioross the network.

Corresponding Source conveyed, and Installatioarinétion provided, in accord with this section
must be in a format that is publicly documentedd(arith an implementation available to the public in
source code form), and must require no specialasisor key for unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplentéetterms of this License by making exceptions
from one or more of its conditions. Additional péssions that are applicable to the entire Prograati s
be treated as though they were included in thigiise, to the extent that they are valid under eapiple
law. If additional permissions apply only to paftthe Program, that part may be used separatelgrun
those permissions, but the entire Program remam&erged by this License without regard to the
additional permissions.

When you convey a copy of a covered work, you mayaur option remove any additional
permissions from that copy, or from any part of {fAdditional permissions may be written to require
their own removal in certain cases when you moti&work.) You may place additional permissions on
material, added by you to a covered work, for whiclu have or can give appropriate copyright
permission.

Notwithstanding any other provision of this Licenéer material you add to a covered work, you
may (if authorized by the copyright holders of thadterial) supplement the terms of this Licensewit
terms:

a7

a) Disclaiming warranty or limiting liability diffeently from the terms of sections 15 and 16 of this
License; or

b) Requiring preservation of specified reasonabimll notices or author attributions in that materia
or in the Appropriate Legal Notices displayed bykeocontaining it; or

¢) Prohibiting misrepresentation of the origin bétt material, or requiring that modified versioris o
such material be marked in reasonable ways agelifférom the original version; or

d) Limiting the use for publicity purposes of nanaédicensors or authors of the material; or

e) Declining to grant rights under trademark lawdee of some trade names, trademarks, or service
marks; or

f) Requiring indemnification of licensors and authof that material by anyone who conveys the
material (or modified versions of it) with contraat assumptions of liability to the recipient, fany
liability that these contractual assumptions diseichpose on those licensors and authors.

All other non-permissive additional terms are cdased "further restrictions" within the meaning of
section 10. If the Program as you received igmy part of it, contains a notice stating thas igoverned
by this License along with a term that is a furthestriction, you may remove that term. If a lisen
document contains a further restriction but permaticensing or conveying under this License, yaaym
add to a covered work material governed by the sesfrthat license document, provided that the &mth
restriction does not survive such relicensing anveying.

If you add terms to a covered work in accord witis section, you must place, in the relevant source
files, a statement of the additional terms thatiyappthose files, or a notice indicating wherefital the
applicable terms.

Additional terms, permissive or non-permissive, ni@ystated in the form of a separately written
license, or stated as exceptions; the above ragaints apply either way.

8. Termination.

You may not propagate or modify a covered work pkees expressly provided under this License.
Any attempt otherwise to propagate or modify itvesd, and will automatically terminate your rights
under this License (including any patent licensesigd under the third paragraph of section 11).

However, if you cease all violation of this Licensken your license from a particular copyright
holder is reinstated (a) provisionally, unless amttil the copyright holder explicitly and finally
terminates your license, and (b) permanently,aefdbpyright holder fails to notify you of the vitilan by
some reasonable means prior to 60 days after Hsaten.

Moreover, your license from a particular copyridjolder is reinstated permanently if the copyright
holder notifies you of the violation by some reasune means, this is the first time you have reakive
notice of violation of this License (for any workpm that copyright holder, and you cure the violat
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does terminate the licenses of parties who have
received copies or rights from you under this L&®n If your rights have been terminated and not
permanently reinstated, you do not qualify to reegiew licenses for the same material under settion

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in ordereceive or run a copy of the Program.
Ancillary propagation of a covered work occurringledy as a consequence of using peer-to-peer
transmission to receive a copy likewise does nqtire acceptance. However, nothing other than this
License grants you permission to propagate or mjodify covered work. These actions infringe
copyright if you do not accept this License. There, by modifying or propagating a covered wordyuy
indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipimtomatically receives a license from the
original licensors, to run, modify and propagatattivork, subject to this License. You are not
responsible for enforcing compliance by third getivith this License.

An "entity transaction” is a transaction transfegricontrol of an organization, or substantially all
assets of one, or subdividing an organization, erging organizations. If propagation of a coveneuk
results from an entity transaction, each partyhiat transaction who receives a copy of the work als
receives whatever licenses to the work the papseslecessor in interest had or could give under the
previous paragraph, plus a right to possessionhef @orresponding Source of the work from the
predecessor in interest, if the predecessor lmascin get it with reasonable efforts.

48

You may not impose any further restrictions on ¢ixercise of the rights granted or affirmed under
this License. For example, you may not imposecenke fee, royalty, or other charge for exercise of
rights granted under this License, and you may indiate litigation (including a cross-claim or
counterclaim in a lawsuit) alleging that any patelaim is infringed by making, using, selling, affeg
for sale, or importing the Program or any portidiit.o

11. Patents.

A "contributor" is a copyright holder who authorszese under this License of the Program or a work
on which the Program is based. The work thus $iedrnis called the contributor's "contributor vensio

A contributor's "essential patent claims" are allgmt claims owned or controlled by the contributor
whether already acquired or hereafter acquired, wlwauld be infringed by some manner, permitted by
this License, of making, using, or selling its adnitor version, but do not include claims that ebbe
infringed only as a consequence of further modificaof the contributor version. For purposesho$t
definition, "control" includes the right to gran@atent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, wortlw royalty-free patent license under the
contributor's essential patent claims, to make, sk, offer for sale, import and otherwise rumdify
and propagate the contents of its contributor versi

In the following three paragraphs, a "patent lieggns any express agreement or commitment,
however denominated, not to enforce a patent (sischn express permission to practice a patent or
covenant not to sue for patent infringement). §maht" such a patent license to a party means te@ma
such an agreement or commitment not to enforcéempagainst the party.

If you convey a covered work, knowingly relying arpatent license, and the Corresponding Source
of the work is not available for anyone to copeefrof charge and under the terms of this License,
through a publicly available network server or otheadily accessible means, then you must either (1
cause the Corresponding Source to be so availab(@) arrange to deprive yourself of the benefithe
patent license for this particular work, or (3)amge, in a manner consistent with the requiremazintisis
License, to extend the patent license to downstresnipients. "Knowingly relying" means you have
actual knowledge that, but for the patent licelyseir conveying the covered work in a country, ouryo
recipient's use of the covered work in a countrguld infringe one or more identifiable patents hatt
country that you have reason to believe are valid.

If, pursuant to or in connection with a single gaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and gaapatent license to some of the parties receivieg t
covered work authorizing them to use, propagatejifp@r convey a specific copy of the covered work,
then the patent license you grant is automatieadtgnded to all recipients of the covered work andks
based on it.

A patent license is "discriminatory” if it does rninotlude within the scope of its coverage, prokibit
the exercise of, or is conditioned on the non-dagerof one or more of the rights that are spedlfica
granted under this License. You may not convepwered work if you are a party to an arrangement
with a third party that is in the business of dlisiting software, under which you make paymenthi t
third party based on the extent of your activitycohveying the work, and under which the third part
grants, to any of the parties who would receive ¢heered work from you, a discriminatory patent
license (a) in connection with copies of the codenmrk conveyed by you (or copies made from those
copies), or (b) primarily for and in connection hvispecific products or compilations that contaia th
covered work, unless you entered into that arramegenor that patent license was granted, prior&o 2
March 2007.

Nothing in this License shall be construed as aknoly or limiting any implied license or other
defenses to infringement that may otherwise beaaito you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by couder, agreement or otherwise) that contradict the
conditions of this License, they do not excuse fron the conditions of this License. If you cannot
convey a covered work so as to satisfy simultarigowsur obligations under this License and any othe
pertinent obligations, then as a consequence ygurmoaconvey it at all. For example, if you agtee
terms that obligate you to collect a royalty fortfier conveying from those to whom you convey the
Program, the only way you could satisfy both thtesens and this License would be to refrain entirely
from conveying the Program.

49

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this Licenyeu have permission to link or combine any
covered work with a work licensed under versionf3he GNU Affero General Public License into a
single combined work, and to convey the resultimgkw The terms of this License will continue tqgp
to the part which is the covered work, but the gdeequirements of the GNU Affero General Public
License, section 13, concerning interaction throagtetwork will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish reviseticaimew versions of the GNU General Public
License from time to time. Such new versions Wwél similar in spirit to the present version, butyma
differ in detail to address new problems or consern

Each version is given a distinguishing version nemb If the Program specifies that a certain
numbered version of the GNU General Public Liceltgeany later version" applies to it, you have the
option of following the terms and conditions eittafrthat numbered version or of any later version
published by the Free Software Foundation. [f Pnegram does not specify a version number of the
GNU General Public License, you may choose anyimergver published by the Free Software
Foundation.

If the Program specifies that a proxy can decidé&chifuture versions of the GNU General Public
License can be used, that proxy's public statemmieatceptance of a version permanently authorines y
to choose that version for the Program.

Later license versions may give you additional dfetent permissions. However, no additional
obligations are imposed on any author or copyrigiitler as a result of your choosing to follow aftat
version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENPERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM SA IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIEDINCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROMEEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRKTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MDIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE @ YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSRUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PRGRGAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OFHE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR ®IER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of figity provided above cannot be given local legal
effect according to their terms, reviewing coutialsapply local law that most closely approximades
absolute waiver of all civil liability in connectiowith the Program, unless a warranty or assumptfon
liability accompanies a copy of the Program in metior a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your Neveghams
If you develop a new program, and you want it toolb¢he greatest possible use to the public, the

best way to achieve this is to make it free sofemahich everyone can redistribute and change under
these terms.

50

To do so, attach the following notices to the pamgr It is safest to attach them to the start chea
source file to most effectively state the exclusafnwarranty; and each file should have at least th
"copyright"” line and a pointer to where the fulltice is found.

<one line to give the program's name and d latga of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistriitisnd/or modify it under the terms of the GNU
General Public License as published by the Freew&oé Foundation, either version 3 of the
License, or (at your option) any later version.sTprogram is distributed in the hope that it wi#l b
useful, but WITHOUT ANY WARRANTY; without even theimplied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE See the GNU General
Public License for more details.

You should have received a copy of the GNU Genetdillic License along with this program. If
not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by elesic and paper mail.
If the program does terminal interaction, makeutpait a short notice like this when it starts in an
interactive mode:

<program> Copyright (C) <year> <name of autho
This program comes with ABSOLUTELY NO WARRANTY; faletails type “show w'.
This is free software, and you are welcome to tebiste it under certain conditions; type “show c'
for details.

The hypothetical commands “show w' and “show allshshow the appropriate parts of the General
Public License. Of course, your program's commanigght be different; for a GUI interface, you would
use an "about box".

You should also get your employer (if you work apragrammer) or school, if any, to sign a
"copyright disclaimer" for the program, if necessar

For more information on this, and how to apply &lbbw the GNU GPL, see

<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit ipomating your program into proprietary
programs. If your program is a subroutine libraygu may consider it more useful to permit linking
proprietary applications with the library. If this what you want to do, use the GNU Lesser General
Public License instead of this License. But figease read <http://www.gnu.org/philosophy/why-not
Igpl.html>.

51

